
A Comparative Study of SHA-256 and the Proposed SHA-288 Hash Model: Algorithmic

Design and Analysis

ABSTRACT
Cryptography is the art of providing security to the message .It gives freedom to the user from hacking of the

original message. The here are multiple techniques to provide cryptographic security to the message but this paper

focus on the SHA-256 hash function and its extended proposed model SHA-288 for better security. The basic

structure of maximum hash functions is based on the Merkle- Damgard construction. Most of the hash functions

are used for information security purposes such as digital signature, password authentication; message

authentication etc.The hash algorithms perform security checks over plain text by converting plain text into cipher

text called message digest or checksums. The paper explains about the cryptanalysis and design of SHA-2 Family

as MD5 and SHA-1 going to be outdated after few months. The new model based on construction of SHA-256

has also been highlight for providing strength to the security domain.

KEYWORDS: SHA-256/288, Merkle-Damgard construction, Digital Signature, Digital India etc.

INTRODUCTION
Most of the Cryptographic hash functions are under attacks from last few years. Many types of attacks have been

observed on the hash algorithms. Cryptographic functions are one way compression function. Most popular hash

functions are producing 128 bits (MD-4, MD-5) and 160 bits (SHA-1) message digest which are no more secure,

therefore security community has decided to replace it with SHA-1 variants. Given a hash value, it should require

work equivalent to about 2𝑙 hash computations any message of length 𝑙 that hashes to that value. Finding any two

messages which hash to the same value should require work equivalent to about 2𝑙/2 hash computations.

Many attacks have been reported, Out of all attacks, the general attacks are

a) Generic attacks: It applies to Merkle-Damgard construction where for p bit hash message digest ,the

order more than 2𝑝/2 are feasible to find attacks on the messages The example of generic attacks are

long-message 2nd pre-image attacks [8,14], Joux multicollisions [1],and herding attacks [9].

b) Cryptanalysis attacks: This attack is applicable to compression function consisting of Merkle-Damgard

construction with multi block collisions on MD-5 and SHA-1 [18, 19].

PROPERTIES OF HASH FUNCTIONS
Given a function𝑓: 𝐷 → 𝑅, then we say that a hash function 𝑓 is

a) Pre-image resistant: For any input 𝑥 ∈ 𝐷 𝑎𝑛𝑑 𝑦 ∈ 𝑅, computationally, it is impossible to find a value

𝑥 ∈ 𝐷 such that 𝑓(𝑥) = 𝑦

b) Second pre-image resistant: For any given input 𝑥 ∈ 𝐷 it is very much hard to find a value 𝑥′ ∈ 𝐷, 𝑥′ ≠
𝑥 and 𝑓(𝑥′) = 𝑓(𝑥)

c) Collision resistant: It is computationally very much hard to find two distinct values 𝑥′, 𝑥 ∈ 𝐷 , 𝑓(𝑥′) =
𝑓(𝑥)

MERKLE-DAMGARD CONSTRUCTION-BASIC HASH FUNCTION STRUCTURE
The Hash functions are based on compression functions that is iterated based on Merkle-Damgard

Construction[8,13].The hash functions like MD5[1] and SHA-1[1] were used for the security domain but now it

has been attacked and going to be obsolete. Both MD-5 and SHA-1 has been attacked by Wang et. al [7, 17]

therefore,this paper explains about the ways of getting better security through SHA-256.

BITUMEN || ISSN: 0006-3916 2025 || Volume 57 Issue: 1

DOI:10.1789/Bmen571-4 page: 18 https://bitumen.cfd/

Deepika Reddy, Vishnu Prasad, Akhilesh Rao, Priyanka Menon,
 Sahana Murthy & Kavitha Krishnan*ÿIndian Institute of Science (IISc), Bangalore, Karnataka, India

SHA-256 ALGORITHMIC ANALYSIS
SHA-256 provides best possible 128 bits security to the communication system. The message digest of SHA-256

are of 256 bits which has good strength. This is a keyless hash function. The algorithmic analysis of SHA-256 has

been explored below.

Basic operations of SHA-256 are as follows:

➢ Boolean operations AND, XOR and OR, denoted by ∧ ,⊕ and ∨ respectively.

➢ Bitwise complement, denoted by ¬

➢ Integer addition modulo232, denoted by A + B.

➢ 𝑅𝑛 -Right Shift by n bits

➢ 𝑆𝑛 -Right Rotation by n bits

a) The message is divided into blocks of 512 bits which is further divided into 16 blocks of 32 bits each.

Each block undergoes 64 rounds of round functions. Each 32bits word goes through the different

operations as described below.

b) The initial hash value 𝐻(0) is calculated by getting fractional part of square root of first 8 prime numbers.

The fractional part is converted into binary then into hexadecimal forms.

𝐻1
0= 6a09e667; 𝐻2

0=bb67ae85; 𝐻3
0=3c6ef372; 𝐻4

0= a54ff53a; 𝐻5
0= 510e527f; 𝐻6

0 = 9b05688c;𝐻7
0= =

1f83d9ab; 𝐻8
0= = 5be0cd19

c) Padding the message: The length of message should be multiple of 512 bits. If the total length of message

is 𝒍 then “1” is appended at the end of the message. The condition𝑙 + 1 + 𝑘 ≡ 448𝑚𝑜𝑑512 should be

satisfied.

d) Now parse the message into N 512-bit blocks 𝑀1, 𝑀2, 𝑀3, 𝑀4, … . . 𝑀𝑁 ,the first 32 bits of message block

𝑖 are denoted 𝑀0
𝑖,, 𝑀1

𝑖 , 𝑀2
𝑖 … . 𝑀15

𝑖 .The algorithm conventions are based on big-endian style.

e) The main loop will be followed as below:

For 𝑖=1 to 𝑁 (𝑁 is number of blocks in the padded message) {

Initialize register 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ with the (𝑖 − 1)𝑠𝑡 with intermediate hash value while running the

loop

𝑎 ← 𝐻1
(𝑖−1)

;𝑏 ← 𝐻2
(𝑖−1)

;𝑐 ← 𝐻3
(𝑖−1)

;𝑑 ← 𝐻4
(𝑖−1)

;

𝑒 ← 𝐻5
(𝑖−1)

;𝑓 ← 𝐻6
(𝑖−1)

;𝑔 ← 𝐻7
(𝑖−1)

;ℎ ← 𝐻8
(𝑖−1)

Now, after running the loop, the compression function is applied to updated the register

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ

For 𝑗 = 0 𝑡𝑜 63 {

Compute

Ch (𝑒, 𝑓, 𝑔); 𝑀𝑎𝑗(𝑒, 𝑓, 𝑔); ∑ (𝑎)0 ; ∑ (𝑒)1 and 𝑊𝑗

𝑇1 ← ℎ + ∑ 𝑒 + 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑗 + 𝑊𝑗1 (Here + is mod 232 Addition)

BITUMEN || ISSN: 0006-3916 2025 || Volume 57 Issue: 1

DOI:10.1789/Bmen571-4 page: 19 https://bitumen.cfd/

𝑇2 = ∑ 𝑎 + 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)
0

ℎ ← 𝑔; 𝑔 ← 𝑓;
𝑓 ← 𝑒;
𝑒 ← 𝑑 + 𝑇1;
𝑑 ← 𝑐;
𝑐 ← 𝑏;
𝑏 ← 𝑎;
𝑎 ← 𝑇1 + 𝑇2;}

Compute the 𝑖𝑡ℎ intermediate hash value 𝐻(𝑖)

𝐻1
(𝑖)

← 𝑎 + 𝐻1
(𝑖−1)

; 𝐻2
(𝑖)

← 𝑎 + 𝐻2
(𝑖−1)

; 𝐻3
(𝑖)

← 𝑎 + 𝐻3
(𝑖−1)

; 𝐻4
(𝑖)

← 𝑎 + 𝐻4
(𝑖−1)

 ;

𝐻5
(𝑖)

← 𝑎 + 𝐻5
(𝑖−1)

 ; 𝐻6
(𝑖)

← 𝑎 + 𝐻6
(𝑖−1)

; 𝐻7
(𝑖)

← 𝑎 + 𝐻7
(𝑖−1)

; 𝐻8
(𝑖)

← 𝑎 + 𝐻8
(𝑖−1)

; }

Finally compute the hash function

𝐻(𝑁)=𝐻1
(𝑁)

‖𝐻2
(𝑁)

‖𝐻3
(𝑁)

‖𝐻4
(𝑁)

‖𝐻5
(𝑁)

‖𝐻6
(𝑁)

‖𝐻7
(𝑁)

‖𝐻8
(𝑁)

The compression functions of SHA-256 are as follows

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧)

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧)

∑ (𝑥) = 𝑆2 (𝑥) ⊕ 𝑆13 (𝑥) ⊕ 𝑆22 (𝑥)
0

∑ (𝑥) = 𝑆6 (𝑥) ⊕ 𝑆11 (𝑥) ⊕ 𝑆25 (𝑥)
1

𝜎0(𝑥) = 𝑆7 (𝑥) ⊕ 𝑆18 (𝑥) ⊕ 𝑅3 (𝑥)

𝜎1(𝑥) = 𝑆17 (𝑥) ⊕ 𝑆19 (𝑥) ⊕ 𝑅10 (𝑥)

The message block 𝑊0, 𝑊1, 𝑊2, 𝑊3, 𝑊4, … … … 𝑊62, 𝑊63 are computed as below

𝑊𝑗 = 𝑀𝑗
𝑖 𝑓𝑜𝑟 𝑗 = 0,1, … .15, 𝑎𝑛𝑑

𝐹𝑜𝑟 𝑗 = 16 𝑡𝑜 63

{ 𝑊𝐽 ← 𝜎1(𝑊𝑗−2) + 𝑊𝑗−7 + 𝜎0 (𝑊𝑗−15) + 𝑊𝑗−16}

There are sixty four constants 𝐾0, … … … . . 𝐾64 words produced by cube roots of fractional part of first

sixty four prime numbers.

EXTENSION OF SHA-256 STRENGTH-PROPOSED MODEL

Now introducing one new initializing variable into the operation such that constant variable 𝐻9
(𝑖)

=
CBBB9D5D(Converting into hexadecimal form of square root of ninth prime number (i.e.23)

Sqrt(23)=4.795831523312719541597438064162693919996707041904129346485309114

Binary equivalent of above number is

100.1100101110111011100111010101110111000001000001011

Now converting into hexadecimal we get CBBB9D5D.

The operation of the hash value in compression functions 𝑖 ← ℎ 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝐻9
(𝑖)

← 𝑎 + 𝐻9
(𝑖−1)

 and then

hash output after concatenation

𝐻(𝑁)=𝐻1
(𝑁)

‖𝐻2
(𝑁)

‖𝐻3
(𝑁)

‖𝐻4
(𝑁)

‖𝐻5
(𝑁)

‖𝐻6
(𝑁)

‖𝐻7
(𝑁)

‖𝐻8
(𝑁)

‖𝐻9
(𝑁)

It will be of 288 bits which may be stronger than SHA-256 hash functions.

CONCLUSION
If we extend the message digest length of SHA-256 from 256 bits to 288 bits as explained above then application

will be more secure perfect. We are talking about the digital India and cashless economy, but the security concern

is the big challenge ahead because we would be using the following security dimension in our daily activities

which would not be secure without better algorithms.

➢ Digital Transaction

➢ Message authentication

BITUMEN || ISSN: 0006-3916 2025 || Volume 57 Issue: 1

DOI:10.1789/Bmen571-4 page: 20 https://bitumen.cfd/

➢ Software integrity

➢ One-time Passwords

➢ Digital signature

➢ Time stamping

➢ Certificate revocation management

The Security strength of SHA-256 which is going to be used in coming days are as follows:

Algorithm Message Size

(bits)

Block Size

(bits)

Word Size

(bits)

Message

Digest Size

(bits)

Extended

Message

Length

SHA-256 < 264 512 32 256 288

FURTHER SCOPE OF RESEARCH
The SHA-2 and SHA-3 family should be analyzed for better security threat tolerance.

Researchers can find the strength and weakness of SHA-256 and proposed SHA-288 family algorithms.

REFERENCES
[1] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In

Matt Franklin, editor, Advances in Cryptology-CRYPTO 2004, volume 3152 of Lecture Notes in

Computer Science,pages 306–316, Santa Barbara, California, USA, August 15–19 2004. Springer.

[2] B.Preneel, V. Rijmen, A.Bosselaers: Recent Developments in the Design of Conventional Cryptographic

Algorithms. In State of the Art and Evolution of Computer Security and Industrial Cryptography. LNCS

1528. Springer-Verlag, Berlin Heidelberg New York(1998) pp.106-131.

[3] E.Biham and R.Chen. Near-Collisions of SHA-0,In Advances in Cryptology CRYPTO’2004, LNCS

3152,p..290-305, 2004.

[4] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions-HAIFA. Technical report,

August 2006. The paper and slides of this work are available at

http://csrc.nist.gov/pki/HashWorkshop/2006/ program_2006.htm. Last access date: 15th of February

2007.

[5] Helena Handschuh and David Naccache. SHACAL, 2001. Available at

https://www.cosic.esat.kuleuven.ac.be/nessie/tweaks.html/shacal tweak.pdf. 15. Carlo Harpes, Gerhard

Kramer, and James Massey. A generalization of linear cryptanalysis and the applicability of Matsui’s

Piling-up lemma. In Louis Guillou and Jean-Jacques Quisquater, editors, Advances in Cryp- tology -

Proceedings of EUROCRYPT 95, volume 921 of Lecture Notes in Computer Science, pp. 24-38.

Springer-Verlag, 1995

[6] I.Damg˚ard. A design principle for hash functions. In G. Brassard, editor, Advances in Cryptology-

CRYPTO’89, LNCS 435. Springer-Verlag, 1990.

[7] Joan Daemen, Michael Peeters, and Gilles Van Assche. RadioGatun, a Belt-and-Mill Hash Function.

Technical report, August 2006. The paper and slides of this work are available at

http://csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm. Last access date: 15th of February

2007.

[8] John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for Much Less than 2ˆn

Work. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture

Notes in ComputerScience, pages 474–490. Springer, 2005.

[9] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In Serge

Vaudenay,editor, Advanes in Cryptology-EUROCRYPT 2006, volume 4004 of Lecture Notes in

Computer Science, pages 183–200. Springer, 2006.

[10] Praveen Gauravaram, William Millan, Ed Dawson, Matt Henricksen, Juanma Gonzalez Nieto, and

Kapali Viswanathan. Constructing Secure Hash Functions by Enhancing Merkle-Damg˚ard Construction

(full version).

[11] Praveen Gauravaram,William Millan, Ed Dawson, and Kapali Viswanathan. Constructing Secure Hash

Functions by Enhancing Merkle-Damg˚ard Construction. In Australasian Conference on Information

Security and Privacy(ACISP), volume 4058 of Lecture Notes in Computer Science, pages 407–420, 2006.

[12] Praveen Gauravaram. Cryptographic Hash Functions: Cryptanalysis, Design and Applications. PhD

thesis,Information Security Institute, Queensland University of Technogy, June 2007.

[13] R.C.Merkle, One Way Hash Functions and DES, In G. Brassard, editor, Advances in Cryptology-

CRYPTO’ 89, LNCS 435 Springer-Verlag, pp.428-446, 1990.

[14] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University, 1999.

BITUMEN || ISSN: 0006-3916 2025 || Volume 57 Issue: 1

DOI:10.1789/Bmen571-4 page: 21 https://bitumen.cfd/

[15] Ronald Rivest. Abelian Square-free Dithering and Recoding for Iterated Hash Functions. Technical

report,October 2005. The paper and slides of this work are available at

http://csrc.nist.gov/pki/HashWorkshop/2005/program.htm. Last access date: 15th of February 2007.

[16] Technical Report QUT-ISI-TR-2006-013, Information Security Institute (ISI), Queensland University of

Technology (QUT), July 2006. This technical report is available at

http://www.isi.qut.edu.au/research/publications/technical/qut-isi-tr-2006-013.pdf. Last access date: 12th

of september 2007.

[17] X. Wang, X.Lai, D.Feng and H.Yu., Cryptanalysis of the Hash Functions MD4 and RIPEMD,

EUROCRYPT 2005, LNCS 3494, pp.1-18, Springer-Verlag, 2005. 42. X. Wang, H. Yu, How to Break

MD5 and Other Hash Functions, EUROCRYPT’2005, Springer-Verlag, LNCS 3494, pp.19-35, 2005.

[18] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer,

editor,Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer

Science, pages 19–35.Springer, 2005.

[19] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup,

editor,Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science,

pages 17–36. Springer, 2005, 14–18 August 2005.

BITUMEN || ISSN: 0006-3916 2025 || Volume 57 Issue: 1

DOI:10.1789/Bmen571-4 page: 22 https://bitumen.cfd/

