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Summary 

1. The environmental filtering hypothesis predicts that the abiotic environment selects species 

with similar trait values within communities. Testing this hypothesis along multiple – and 

interacting – gradients of climate and soil variables constitutes a great opportunity to better 

understand and predict the responses of plant communities to ongoing environmental 

changes. 

2. Based on two key plant traits, maximum plant height and specific leaf area (SLA), we 

assessed the filtering effects of climate (mean annual temperature and precipitation, 

precipitation seasonality), soil characteristics (soil pH, sand content and total phosphorus) 

and all potential interactions on the functional structure and diversity of 124 dryland 

communities spread over the globe. The functional structure and diversity of dryland 

communities were quantified using the mean, variance, skewness and kurtosis of plant trait 

distributions. 

3. The models accurately explained the observed variations in functional trait diversity across 

the 124 communities studied. All models included interactions among factors, i.e. climate 

– climate (9% of explanatory power), climate – soil (24% of explanatory power) and soil – 

soil interactions (5% of explanatory power). Precipitation seasonality was the main driver 

of maximum plant height, and interacted with mean annual temperature and precipitation. 

Soil pH mediated the filtering effects of climate and sand content on SLA. Our results also 
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revealed that communities characterized by a low variance can also exhibit low kurtosis 

values, indicating that functionally contrasting species can co-occur even in communities 

with narrow ranges of trait values.  

4. Synthesis We identified the particular set of conditions under which the environmental 

filtering hypothesis operates in drylands worldwide. Our findings also indicate that species 

with functionally contrasting strategies can still co-occur locally, even under prevailing 

environmental filtering. Interactions between sources of environmental stress should be 

therefore included in global trait-based studies, as this will help to further anticipate where 

the effects of environmental filtering will impact plant trait diversity under climate change.  

Keywords: climate, community assembly, determinants of plant community diversity and 

structure, functional biogeography, functional diversity, plant height, pH, precipitation 

seasonality, specific leaf area, trait distribution. 

Introduction 

Environmental filtering is one of the most pervasive concept in ecology, being central in many 

studies of plant community assembly, biogeography (e.g. Swenson et al. 2012; de Bello et al. 

2013), and trait-based modelling (see Laughlin & Laughlin 2013 for a review). The 

environmental filtering hypothesis predicts that the abiotic environment selects species with 

similar trait values within communities (Keddy 1992; Weiher et al. 1998; Grime 2006). The 

effect of environmental filtering on plant communities has been traditionally assessed along 

local or regional environmental gradients (e.g. Fonseca et al. 2000; Gross et al. 2008; de Bello 

et al. 2013; Butterfield & Munson 2016). However, the effect of environmental filtering, sensu 

stricto, is difficult to isolate from that of local biotic interactions along these gradients (Maire 

et al. 2012; Gross et al. 2013; Kraft et al. 2015). In a recent paper, Kraft et al. (2015) called for 

testing the environmental filtering hypothesis explicitly along marked abiotic gradients. This 

can be typically achieved using large scale (e.g. continental and global) observational surveys 
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focusing on functional trait diversity (e.g. Coyle et al. 2014; Lamanna et al. 2014; Simova et 

al. 2015). Although they are still sparse, these studies may inform us on the importance of 

environmental filtering for shaping in the diversity of plant forms and functions globally. 

Multiple sources of abiotic stresses are likely to interact and may determine the outcome 

of environmental filtering on functional trait diversity at the global scale (e.g. Reich et al. 2006; 

Simpson & Laughlin 2016). For instance, ongoing climate change involves simultaneous shifts 

in both temperature and precipitation regimes (IPCC 2013). Large-scale climate gradients such 

as temperature and precipitation regimes are expected to interact (climate – climate 

interactions), and impact on plant communities and associated ecosystem processes in complex 

ways (see Peñuelas et al. 2013 for a review). In addition, large-scale climate gradients are prone 

to interact with local soil conditions (i.e. climate – soil interactions: Ordonez et al. 2009; Fridley 

et al. 2011; Liancourt et al. 2013). Pervasive climate – soil interactions may explain the large 

variation in diversity of foliar traits observed between co-occurring species for a given 

temperature and precipitation level (Wright et al. 2004; Freschet et al. 2011). Yet, the effect of 

climate–climate or climate-soil interactions on plant functional trait diversity has been barely 

quantified (Simpson & Laughlin 2016). Testing the environmental filtering hypothesis along 

multiple gradients of climate and soil variables, and their interactions, constitutes a great 

opportunity to better understand and predict the response of plant trait diversity under climate 

change (Violle et al. 2014; Enquist et al. 2015). 

The environmental filtering hypothesis predicts a shift in the trait values of plant species 

that confers higher stress tolerance with increased environmental stress (e.g. Grime 2006, see 

Fig. 1a and b for detailed hypothesis). A second prediction is a reduction in the range of trait 

values observed within communities, because lower stress tolerant species may be filtered out 

of the community (Cornwell & Ackerly 2009, Fig. 1c and d). These two predictions implicitly 

assume that a single, most favorable, functional strategy characterized by a narrow set of 

BITUMEN || ISSN: 0006-3916                                         2024 || Volume 56  Issue: 11

DOI:10.1789/Bmen5611-02                     page: 15                      https://bitumen.cfd/



suitable trait values, allows plant species to establish and persist under a given level of abiotic 

stress (Enquist et al. 2015). However, the predictions of the environmental filtering hypothesis 

contrast with the high functional trait diversity that can be observed within plant communities 

(Wright et al. 2004), even in stressful environments (Chesson et al. 2004; Freschet et al. 2011; 

Gross et al. 2013).  

Dryland ecosystems typically reflect the discrepancy between predictions and in situ 

observations. According to the environmental filtering hypothesis, dryland species should 

exhibit a stress-tolerant strategy, (sensu Grime 1974), e.g., having thick evergreen leaves [low 

specific leaf area (SLA)] and short stature (Wright et al. 2001; Moles et al. 2009). However, 

stress-tolerant species can often coexist in arid regions with stress-avoidant species with thin 

and summer-deciduous leaves (Noy-Meier 1973; Grime 1977; Chesson et al. 2004), and this 

coexistence increases trait diversity within dryland plant communities (Gross et al. 2013). 

Understanding the discrepancy between predictions of the environmental filtering hypothesis 

and the high functional diversity observed in global drylands is crucial. Maintaining a high 

functional trait diversity can enhance their resistance to aridity (Valencia et al. 2015), which is 

forecasted to increase in drylands worldwide by the end of this century (Huang et al. 2016). 

We aimed to test the effect of multiple climate and soil drivers on functional trait diversity 

using a unique data set of 124 arid, semi-arid, and dry-subhumid plant communities spread over 

all continents, except Antarctica (Appendix S1). The studied environmental drivers included (i) 

large-scale climate gradients of mean annual temperature (MAT), mean annual precipitation 

(MAP) and precipitation seasonality (PS); (ii) three soil variables representing the physico-

chemical properties of the bedrock, and influencing soil fertility (Maire et al. 2015): soil pH, 

sand content and total phosphorus (TP); (iii) all potential interactions between the 

environmental drivers, i.e. climate – climate, climate – soil and soil – soil interactions. 

Functional trait diversity was quantified as the abundance-weighted distributions within 
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communities of specific leaf area (SLA) and maximum plant height (trait distributions 

hereafter). These two traits capture the global spectrum of plant form and function in terrestrial 

ecosystems (Diaz et al. 2016), and are key determinants of functional diversity and ecosystem 

functioning in semi-arid plant communities (Gross et al. 2013; Le Bagousse-Pinguet et al. 2015; 

Valencia et al. 2015). We considered the mean (location), the variance (dispersion), and the 

skewness and kurtosis (shape) of trait distributions, which are all central to understanding how 

species assemble within communities, and how plant communities respond to environmental 

change (Enquist et al. 2015).  

Following the environmental filtering hypothesis, dryland communities should converge 

toward shorter statured and conservative plant strategies with increased abiotic stress. This 

convergence will decrease both their SLA and maximum plant height (lower mean: Fig. 1a and 

b) and the range of trait values observed (smaller variance, c and d). It will also lead to 

asymmetric distributions with “optimal” trait values for the shortest and most conservative 

species occurring within communities (positive skewness, e and f), and decrease the evenness 

of distributions (high kurtosis, g and h) altogether (i and j). 

  

Material and Methods 

STUDY AREA  

Based on data availability, we used a subset of 124 sites from the global dryland network 

presented in Maestre et al. (2012a). The 124 study sites are located in 13 countries (Argentina, 

Australia, Chile, China, Ecuador, Israel, Kenya, Mexico, Morocco, Spain, Tunisia, USA and 

Venezuela; Appendix S1). Our dataset included representative sites from the major vegetation 

types found in drylands (excluding hyper arid areas, which usually have little or no perennial 

vegetation), and differed widely in climate conditions: mean annual temperature and 

precipitation ranged from -1.8°C to 27.8°C, and from 79 mm to 1177 mm, respectively. 
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CLIMATE VARIABLES  

The climate features of the 124 studied sites included mean annual temperature (MAT), mean 

annual precipitation (MAP) and precipitation seasonality (PS: coefficient of variation of 12 

monthly rainfall totals), all major determinants of ecosystem structure and functioning in 

drylands worldwide (see Maestre et al. 2012b for a review). We selected these large-scale 

climate gradients because: i) they are important drivers of trait variation both at regional and 

global scales (e.g., Wright et al. 2004; Swenson et al. 2012; Moles et al. 2014); ii) they are key 

variables for explaining global variation in dryland ecosystem functioning (Maestre et al. 

2012a); and (iii), MAT, MAP and PS describe largely independent features of site climate in 

the studied dataset (bivariate correlations, r < 0.3 in all cases, Appendix S2). Standardized 

climate data for all study sites were obtained from Worldclim (www.worldclim.org), a high 

resolution (30 arc seconds or ~ 1km at equator) global database (Hijmans et al. 2005). We did 

not include irradiance in our models despite being an important abiotic factor in drylands (Noy-

Meier 1973) and a main driver of specific leaf area (Poorter et al 2009). We did so because 

irradiance presented a low coefficient of variation in our dataset (11% in comparison with other 

climate variables with coefficient of variation above 50%), and was highly correlated with MAT 

(r = 0.84). Temperature seasonality (standard deviation of monthly temperatures * 100) was 

also not considered due to its correlation with MAT in the studied dataset (r = 0.59). 

SOIL VARIABLES 

We aimed to select only soil variables that are largely independent from any biological activities 

(plants, microbes) to effectively assess the true abiotic filtering effect of soil variables on 

functional trait diversity. We considered the physico-chemical properties of the bedrock using 

the soil sand content, soil pH and total phosphorus (TP), measured for each site in bare soil (i.e. 

avoiding vegetation patches). The physico-chemical properties widely differed among the 124 

sites: soil sand content, soil pH and TP ranged from 28% to 95%, from 5.15 to 9.28, and from 
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0.05 to 1.45 mg P. g-1 soil, respectively. These three physico-chemical properties are considered 

as primordial master soil variables (Maire et al. 2015), play key roles in the availability of water 

and nutrients in drylands, and are major drivers of the composition and diversity of dryland 

microbial communities (Delgado-Baquerizo et al. 2016). Soil fertility is expected to be higher 

in less sandy soils (sand content strongly covaries with soil organic matter and silt content but 

not with clay content, data not shown), in soils with pH between 7.5 and 8.5 (soil enzymatic 

activities of N, P and C cycles peak between this range, Delgado-Baquerizo et al. 2015), and 

with high phosphorus content (Jenny 1941). Soil water retention is then expected to be highest 

in less sandy soils. These variables were measured in five soil samples per site as described in 

Maestre et al. (2012a), and were averaged for further statistical analyses. Sand, clay and silt 

contents were measured in soil samples (0-7.5 cm depth) in open areas devoid of vascular 

vegetation. Soil pH was measured with a pH meter, in a 1: 2.5 mass: volume soil and water 

suspension. Total phosphorus was measured using a SKALAR San++ Analyzer (Skalar, Breda, 

The Netherlands) after digestion with sulphuric acid. Clay and silt contents were not used in 

our analyses due to their correlation with sand content (r = -0.52 and -0.55, respectively). 

OTHER VARIABLES  

Changes in the functional trait diversity of plant communities observed along environmental 

gradients may be partly driven by changes in the local species pools (species richness), 

historical context and topography. We considered species richness, the latitude and longitude 

of our study sites, as well as topography (slope angle; it ranged between 0.2° to 27.8° in our 

dataset) in our analyses to control for all these potential confounding effects. We used the sinus 

and cosinus of the longitude to avoid any bias due to intrinsic circularity of longitude in the 

statistical models (i.e., Longitude (sin) and Longitude (cos) hereafter, respectively).  

TRAIT DISTRIBUTIONS 
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Trait distributions were quantified for each of the 124 sites, by using two independent datasets: 

(i) a detailed dataset containing the cover of each perennial plant species measured in 80 

quadrats of 2.25 m² within each site, where the sum of the cover for each species is used as a 

proxy of species abundance at site (Maestre et al. 2012a); and (ii) data for SLA and maximum 

plant height, retrieved from the TRY database (Kattge et al. 2011). The 124 sites were selected 

because trait data were available for: (1) all the perennial species that together accounted for a 

cumulative relative abundance >80%, and (2) the four most dominant species to avoid any 

breaks in the trait distributions. We used averaged values when multiple trait data were 

available for a given species in the TRY database. Trait data were available for 316 and 526 

species out of 622 species, for SLA and maximum plant height respectively. Specific Leaf Area 

is a key trait indexing leaf-level carbon gain strategies (Wright et al. 2004). Plant height reflects 

a trade-off for biophysical constraints in determining water fluxes within the plant (Diaz et al. 

2016), and is related to its competitive ability (e.g. Schamp et al. 2008). Specific leaf area and 

height load heavily along two important independent axes of plant ecological strategies (Diaz 

et al. 2016). Maximum plant height and SLA were log-transformed before analysis to amplify 

the probability of detecting functional community patterns (Majekova et al. 2016). 

We calculated the mean, variance, skewness and kurtosis (all weighted by the relative 

abundance of species) of the 124 trait distributions for SLA and maximum plant height 

separately: 

𝑀𝑒𝑎𝑛𝑗  =  ∑ 𝑝𝑖𝑇𝑖𝑛
𝑖         (Eqn 1); 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑗  =  ∑ 𝑝𝑖(𝑇𝑖 − 𝑀𝑒𝑎𝑛𝑗)²𝑛
𝑖       (Eqn 2); 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑗  =  ∑
𝑝𝑖(𝑇𝑖− 𝑀𝑒𝑎𝑛𝑗)3

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑗

3
2

𝑛
𝑖                (Eqn 3); 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑗  =  ∑
𝑝𝑖(𝑇𝑖− 𝑀𝑒𝑎𝑛𝑗)4

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑗
2

𝑛
𝑖      (Eqn 4); 
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where pi and Ti are the relative abundance and the trait value of the species i respectively, n is 

the total number of species in a community with available trait values. For each community, 

the sum of relative abundance equal to 100%, i.e. ∑ 𝑝𝑖 = 1𝑛
𝑖 .  

The skewness and the kurtosis are unitless, and inform on the shape of the trait distribution. 

The skewness represents the asymmetry of the distributions. Highly negative or positive values 

of skewness occur when trait distributions are strongly right-or left-skewed, with a few species 

that have extreme trait values compared to the bulk of the distribution. Skewed distributions 

typically result from phenomena such as environmental changes or asymmetric competition 

(Schamp et al. 2008; Enquist et al. 2015). Kurtosis represents the relative peakiness of the trait 

distribution and the heaviness of its tails. Low kurtosis reflects the evenness in abundance of 

trait values occurring within the community, i.e., a high functional diversity (Enquist et al. 

2015). 

STATISTICAL ANALYSES 

We built four competing models using multiple linear regressions to assess the effect of climate, 

soil variables and their interactions on each moment of the trait distributions for SLA and plant 

height separately. We included in the first model species richness, geography, topography and 

climate variables as predictors (model “CLIMATE”). The second model included species 

richness, geography, topography, and soil variables as predictors (model “SOIL”). The third 

model included all predictors of these models (model “CLIMATE + SOIL”). Finally, the fourth 

model includes all predictors of the model “CLIMATE + SOIL” plus all possible two-way 

interactions between MAT, MAP, PS, sand content, pH and TP (model “CLIMATE + SOIL + 

INTERACTIONS”). The variance inflation factors among the predictors used were far below 

10 in all cases, hence multicollinearity was low (Appendix S2). Note that we also considered 

quadratic terms for all predictors since functional structure and trait diversity do not necessarily 
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change linearly along strong gradients (e.g. Gross et al. 2013; Le Bagousse-Pinguet et al. 2015; 

Valencia et al. 2015).  

We used a model selection procedure, based on minimizing the corrected Akaike 

information criterion (AICc), to select the best predictors of trait distributions. In a first step, 

we performed model simplification using a backward regression procedure. We subsequently 

removed non-significant quadratic and interaction terms that did not impact model predictive 

ability (r²), and further kept all models with lower AICc (ΔAICc < 10). Then, a model selection 

procedure based on AICc selection (ΔAICc < 2) was applied on the resulting full models to 

select the best predictors most supported by the data. This procedure was performed using the 

function dredge in the R package MuMIn (Barton 2013). Species richness, geography and 

topography were always maintained during the model selection procedure. Model averaging 

was performed based on AICc thresholds (ΔAICc < 2; Burhnam & Anderson 2002) when 

multiple models were selected. Model residuals were inspected for constant variance and 

normality. All predictors were standardized before analyses using the Z-score to interpret 

parameter estimates on a comparable scale. Response variables were log-transformed when 

necessary before analysis to meet the assumptions of the tests used. 

We evaluated the relative effect of each predictor on the four moments of the trait 

distributions. We used an analogue of the variance decomposition analysis based on Z-scores. 

Since predictors were all Z-scored prior analyses, the relative effect of each predictor can be 

simply calculated as the ratio between its parameter estimate and the sum of all parameter 

estimates, and expressed in %. Then, the obtained relative effects of predictors are grouped into 

five identifiable variance fractions: i) climate – climate interactions, ii) climate, iii) climate – 

soil interactions, iv) soil, v) soil – soil interactions, vi) species richness, vii) geography (latitude, 

longitude (sin), longitude (cos), slope), and viii) unexplained variance. 
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We also used the parameter estimates of interacting predictors to illustrate how climate – 

climate, climate – soil and soil – soil interactions impact the moments of the trait distributions. 

We fixed one of the two interacting predictors at either low or high value, and examined the 

effect of the other predictor on the four moments of trait distributions, while the parameter 

estimates of all other predictors were fixed to their mean value (i.e. 0 since all predictors were 

Z-scored). All statistical analyses were performed using the R statistical software 2.15.1 (R 

Core Team 2012). 

 

Results 

The predictive power of our models was high, but gradually decreased when explaining higher 

moments of trait distributions for maximum plant height (Fig. 2) and specific leaf area (Fig. 3). 

For plant height, the predictive power of the models was higher for the mean (Fig. 2: adjusted 

r² = 0.817) and variance (0.587), compared to skewness (0.275) and kurtosis (0.262). For 

specific leaf area, the predictive power of the models on trait distributions was the highest for 

the mean (Fig. 3: adjusted r² = 0.638), and also reached more than 40% for the variance (0.415) 

and skewness (0.408). 

Models including climate – climate, climate – soil and soil – soil interactions explained 

more variance than the additive models for the four moments of both plant height and specific 

leaf area (Appendices S3, S4 and S5). These results highlight the importance of considering 

interactions between multiple sources of abiotic stress when assessing functional trait diversity 

at global scale. Climate – climate interactions explained up to 9% of the model variance for 

maximum plant height (Fig. 2), and up to 7% for SLA (Fig. 3). For instance, increasing 

precipitation seasonality significantly interacted with mean annual temperature and 

precipitation (Fig. 2). Under low seasonality, higher aridity (i.e. an increase in MAT together 

with a decrease in MAP) increased mean plant height (Fig. 4a), weakly impacted the variance 
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(c), and decreased the skewness (e) and kurtosis (g). Under low seasonality, these results 

indicated a weak effect of increased aridity on functional trait diversity. In contrast, we observed 

a strong filtering effect of aridity under high precipitation seasonality (Fig. 4, right panels). 

Under high seasonality, aridity decreased the mean (Fig. 4b) and variance for plant height (d), 

and increased the skewness (f). Note that kurtosis of plant height also strongly decreased in the 

harshest conditions (Fig. 4h: low MAP and high MAT), suggesting for the local co-occurrence 

of functionally contrasting strategies. 

Climate – soil interactions explained up to 15% for maximum plant height, and up to 

24% for SLA. The effects of climate on trait distributions were significantly modulated by soil 

pH, and notably for SLA (Fig. 3). In acidic conditions, the mean SLA increased, and the 

skewness decreased with lower MAP and higher MAT (Fig. 5a and g). The variance of SLA 

decreased in the most arid sites while its kurtosis increased (Fig. 5d and j), indicating a decline 

in functional trait diversity. Communities developing under basic soil conditions were 

dominated by more stress-tolerant species exhibiting low SLA values with increasing aridity 

(Fig. 5c: low mean SLA; 5i: high skewness). A higher SLA variance and a lower kurtosis were 

also observed in most arid sites (Fig. 5f and l). These results indicate an increase in functional 

trait diversity with environmental stress. 

Finally, soil – soil interactions explained a smaller, but significant fraction of the 

variation in functional trait diversity observed (up to 5%, Fig. 3), mostly due to the interaction 

between sand content and soil pH for SLA (Fig. 6). Both the lowest and the highest mean SLA 

occurred at low sand content (Fig. 6a). The lowest mean SLA occurred under basic soil 

conditions (soil pH ~ 8), whereas the highest mean SLA was observed under acidic conditions 

(pH ~ 5.5). Also, the variance of SLA strongly increased with soil pH in sandy soils (high sand 

content), but it was not sensitive to soil pH at low sand content (Fig. 6b). Finally, we also 
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observed lowest values in the kurtosis of SLA for pH ~ 7 (Fig. 6d), indicating that trait diversity 

was the highest under neural conditions. 

 

Discussion 

Interactions between multiple abiotic stress sources are key for predicting functional trait 

diversity at a global scale. By considering the interactions among abiotic drivers, and by 

controlling for the local species pool, we identified the particular sets of environmental 

conditions under which the environmental filtering hypothesis operates in drylands worldwide. 

Shifts in functional trait diversity along abiotic drivers were trait-specific, with a major role of 

climate-climate interactions in driving the abundance distributions of maximum plant height. 

Climate – soil and soil – soil interactions had a predominant effect on SLA. 

 

FUNCTIONAL TRAIT DIVERSITY RESPONSES TO CLIMATE AND SOIL 

CONDITIONS IN DRYLANDS 

Precipitation seasonality was a major driver of functional trait diversity for maximum plant 

height in the drylands studied, and strongly modulated the effects of MAT and MAP on this 

diversity (Fig. 4). Under high precipitation seasonality, increased MAT and lower MAP not 

only filtered plant communities toward the dominance of shorter species (Fig. 4b: lower mean), 

but also narrowed the range of trait values (Fig. 4d: lower variance). Therefore, intense drought 

periods in the most arid part of the studied gradient filtered plant communities toward a narrow 

set of suitable trait values allowing them to cope with the strong abiotic constraint, supporting 

for the environmental filtering hypothesis (Keddy 1992; Weiher et al. 1998; Grime 2006). The 

observed reduction in plant height in the harshest conditions of our climate gradients (i.e., high 

precipitation seasonality and temperature, and low annual precipitation) supports the 

hypotheses of height limitation due to hydraulic constraints (e.g. Koch et al. 2004). Although a 
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loss of hydraulic conductivity following embolisms can also be common for shorter plant 

species, tall plants show low recovery capacity after the loss of hydraulic functions (Koch et al. 

2004).  

 Soil pH was an important driver explaining functional trait diversity for SLA, but its 

effect was modulated by the climate drivers and the sand content (Figs. 3, 5, 6). A negative 

correlation between soil pH and mean SLA has been documented at the global scale (Maire et 

al. 2015), but we found that this is true only under low sand content conditions in drylands (Fig. 

6a). When SLA decreases, leaf nitrogen content (per area) can increase, favoring leaf 

photosynthesis for a given water use (Maire et al. 2015). Our results would accord with the 

theory and observations that predict the dominance of species with high leaf nitrogen strategy 

to increase water use efficiency (Wright et al. 2003). This leaf nitrogen strategy is viable only 

when plant nitrogen uptake is less expensive (in terms of energy cost) than water uptake and 

transport from soil to leaves (Prentice et al 2014). In arid ecosystems, this may occur under 

high soil fertility conditions, i.e., under intermediate/high soil pH, low sandy soils (Fig. 6a), 

and warm temperatures favoring soil organic matter decomposition (Fig. 5b and c).  

 We also observed an increase in SLA variance with soil pH (Fig. 3). Over evolutionary 

time scale, soil pH has also been recognized as creating an environmental backdrop under which 

species diversity is shaped (Laliberté et al. 2014). As such, we expect the size of the calcicolous 

trait pool to be larger in drylands, where the regional soil pH, which can be different from the 

local soil pH, is on average alkaline (Hengl et al. 2014). This may favor the highest functional 

diversity observed in our alkaline sites, especially under warm climate conditions where a larger 

set of species may benefit from higher soil fertility and faster growing conditions (Fig. 6b). On 

the other hand, when climate is cold, soil organic matter decomposition slows down and soil 

fertility decreases, while residual negative impact of high soil pH (e.g. salinity) may increase 

the environmental stress and act as a strong filter (decreasing SLA variance). 
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THE ENVIRONMENTAL FILTERING HYPOTHESIS IN GLOBAL DRYLANDS 

It is imperative to consider pervasive interactions between environmental drivers in order to 

identify the circumstances under which environmental filtering will impact functional trait 

diversity (Simpson & Laughlin 2016). Previous large-scale studies reported that higher abiotic 

stress does not necessarily filter plant communities toward a narrower range of trait values 

(Coyle et al. 2014; Simova et al. 2015). Our study reveals the environmental conditions under 

which functional trait diversity may decrease in global dryland in response to abiotic filtering 

processes: e.g., under the combining effect of high precipitation seasonality, high MAT and 

low MAP (Fig 4: right panels), or under high MAT and low MAP in acidic conditions (Fig. 5: 

left panels).  

Importantly, our study also shows that abiotic stress should not necessarily imply a 

reduction in functional trait diversity. For instance, higher MAT and lower MAP did not affect 

the functional trait diversity of height in the studied drylands when precipitation seasonality 

was low (Fig. 4c). We even observed an increase in functional trait diversity (variance) for SLA 

with higher MAT and lower MAP in basic soil conditions (Fig. 5e and f). Our results support 

the view that multiple sets of trait values can allow functionally contrasting species to cross the 

filtering effect imposed by an abiotic stress, where they can equally perform in term of 

abundance in a given community (e.g. Gross et al. 2013). In dry and hot conditions, high trait 

variance can reflect the co-occurrence of stress-avoidant vs. stress tolerant species within 

communities for a given level of stress (Poorter et al. 2009; Gross et al. 2013), the occurrence 

of positive interactions (e.g. Butterfield & Briggs 2011; Butterfield & Munson 2016), or spatial 

/ temporal storage effects (Chesson 2000; Chesson et al. 2004).  

 Our approach focusing on the four moments of trait distributions also reveals the 

existence of additional mechanisms that can promote the local co-occurrence of functionally 

contrasting species within communities. We showed that variance and kurtosis varied 
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independently along environmental stress gradients. For instance, we observed an increased 

evenness in the abundance of trait values for maximum plant height under high MAT and low 

MAP (i.e. low kurtosis value, Fig. 4g and h), while variance slightly or strongly decreased under 

low and high precipitation seasonality, respectively (Fig. 4c and d). Also, we observed that 

kurtosis was minimized for neutral pH, a signal that was not observed with the variance (Fig. 

6b and d). Our results indicated that functionally contrasting species can still co-occur even 

under prevailing environmental filtering, i.e., even when the abiotic environment selects for 

narrower ranges of trait values within communities (see also Cornwell & Ackerly 2009 and 

Gross et al. 2013 for similar evidences along local environmental gradients).  

  Finally, it is worth noting that we observed an overall decrease in the predictive power 

of our statistical models using the higher moments for maximum plant height (Fig. 2) and 

specific leaf area (Fig. 3). The predictive power of our models was very high for the mean of 

trait distributions, intermediate for the variance, and low for the shape parameters (skewness 

and kurtosis). These results may arise from a higher sensitivity of the skewness and the kurtosis 

to sampling effort. When considering frequency distribution, skewness and kurtosis might be 

very sensitive to the local species richness, making their estimation potentially difficult in 

species-poor communities. However, we focused on abundance-weighted skewness and 

kurtosis using an extensive field survey. This should circumvent such a methodological 

limitation because: (i) the shape of the distribution is driven by the abundance of traits within 

the community; (ii) the sampling effort for species relative abundance is standardized across 

communities; and (iii) skewness and kurtosis were largely independent from local species 

richness in our dataset (Figs. 2 and 3). Instead, the observed decrease in the predictive power 

of our models when using the higher moments likely reflects a decrease in the abiotic 

determinism of the moments of trait distributions. The mean and the variance of trait 

distributions reflect the functional type and diversity of plant communities (Mouillot et al. 
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2011); in turn, this reflects the effect of the abiotic environment in sorting species with a given 

set of traits values. By contrast, the shape parameters reflect the intrinsic structure of plant 

communities and how the abundance and trait diversity are assembled and distributed locally 

(see Gross et al. 2009 for an experimental test on how biotic interactions can shape trait 

abundance distribution). Skewness and kurtosis are then likely encompassing not only abiotic 

factors, but also the biotic processes involved in shaping plant diversity (Schamp et al. 2008; 

Gross et al. 2009; Butterfield & Munson 2016). Hence, this work provides strong evidence that 

these parameters are crucial for improving our predictions of the effects of climate change on 

plant communities and associated ecosystem functions (Enquist et al. 2015). 

 

CONCLUSIONS 

Our study, which is based on the four moments of trait distributions and that considers 

interactions between multiple abiotic stress drivers, plays an important role in depicting the 

complex effects of environmental filtering on plant functional trait diversity in global drylands. 

This approach would certainly gain predictive power by integrating intraspecific trait variability 

that can strongly impact plant community assembly (e.g. Le Bagousse-Pinguet et al. 2014, 

2015; Siefert et al. 2015), and particularly by considering complex shapes of individual-level 

trait distributions (Laughlin et al. 2015). We show that interactions between climate and soil 

variables highlight the importance of environmental filtering and are fundamental in the 

understanding of trait diversity patterns. Identifying the combinations of environmental factors 

leading to lower functional diversity is of primary importance to better understand and predict 

how global environmental change will impact plant communities in drylands.  
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Figures 

Fig. 1. Schematic representation of shifts in trait distributions for maximum plant height and 

specific leaf area (SLA), following the environmental filtering concept. We represent the shifts 

in mean (a,b), variance (c,d), skewness (d,e), kurtosis (f,g), and all moments together (h,i) of 

the trait distributions under low and high abiotic stress. 

Fig. 2. Effects of multiple sources of environmental stress and their interactions on the trait 

distributions for maximum plant height. Results are presented for the mean, variance, skewness 

and kurtosis of trait distributions. We show the averaged parameter estimates (standardized 

regression coefficients) of model predictors, the associated 95% confidence intervals and the 

relative importance of each factor, expressed as the percentage of explained variance. The adj.r² 

of the averaged models and the p-value of each predictor are given as: (.), p < 0.1; *, p < 0.05; 

** p > 0.01; *** p < 0.001. 

MAT: mean annual temperature; MAP: mean annual precipitation; PS: precipitation 

seasonality; TP: total phosphorus. 

Fig. 3. Effects of multiple sources of environmental stress and their interactions on the trait 

distributions for specific leaf area (SLA). Rest of legend as in Fig. 2.  

MAT: mean annual temperature; MAP: mean annual precipitation; PS: precipitation 

seasonality; TP: total phosphorus. 

Fig. 4. Predicted trait distributions (black dots) from the interactions between mean annual 

temperature (MAT) and precipitation seasonality, and between mean annual precipitation 

(MAP) and precipitation seasonality for maximum plant height in a 3D plot. We represented 

the effects of interactions using the standardized parameter estimates of MAT and MAP (Fig. 
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2). Predictions were calculated for low and high precipitation seasonality (CV seasonality = 12 and 

CV seasonality = 124, respectively). All other standardized parameter estimates were fixed at their 

mean value. The colours of the predicted planes change from blue (low values of the moments) 

to red (high values). 

Fig. 5. Predicted trait distributions (black dots) from the interactions between mean annual 

temperature (MAT) and pH, and between mean annual precipitation (MAP) and pH for specific 

leaf area (SLA) in a 3D plot. We represented the effects of interactions using the standardized 

parameter estimates of MAT and MAP (Fig. 3). Predictions were calculated for acidic, slightly 

basic and basic conditions (pH = 5.5, pH = 7.8, pH = 9.3, respectively). All other standardized 

parameter estimates were fixed at their mean value. The colours of the predicted planes change 

from blue (low values of the moments) to red (high values). 

Fig. 6. Predicted trait distributions (black dots) from the interactions between pH and sand 

content for specific leaf area (SLA) in a 3D plot. We represented the effects of interactions 

using the standardized parameter estimates of pH and sand content (Fig. 3). All other 

standardized parameter estimates were fixed at their mean value. The colours of the predicted 

planes change from blue (low values of the moments) to red (high values). 

Figures 

Fig. 1.  
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Fig. 2. 
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Fig. 3.  
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Fig. 5 
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Fig. 6.  
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Appendices 

Appendix S1. Map of the 124 drylands sampled (black dots). 
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Appendix S2. Pearson correlation coefficients among predictors included in the statistical models. We also present the results of the variance 

inflation factor (VIF) to evaluate the risk of multicollinearity. Multicollinearity occurs when VIF values exceed 10. 

MAT: mean annual temperature; MAP: mean annual precipitation; PS: precipitation seasonality, TP: total phosphorus. 

 

 

 

Longitude (sin) Longitude (cos) Slope Richness MAT MAP PS Sand pH TP

0.08 -0.21 0.47 -0.04 -0.20 -0.05 0.12 -0.32 0.56 0.01 Latitude

-0.35 0.23 -0.05 0.06 0.00 -0.03 -0.10 0.09 -0.06 Longitude (sin)

-0.21 0.17 -0.22 -0.02 0.04 0.07 -0.16 0.09 Longitude (cos)

0.20 -0.13 0.13 0.03 -0.40 0.28 -0.18 Slope

-0.14 0.10 -0.45 -0.22 -0.11 -0.16 Richness

0.27 -0.21 0.05 0.02 -0.32 MAT

0.02 -0.06 -0.50 -0.16 MAP

0.12 -0.21 0.36 PS

-0.26 -0.03 Sand

0.05 pH

Models r² VIF

Latitude ~ Longitude (sin) + Longitude (cos) + Slope + Richness + MAT + MAP + PS + Sand + pH + TP 0.55 2.22

Longitude (sin) ~ Latitude + Longitude (cos) + Slope + Richness + MAT + MAP + PS + Sand + pH + TP 0.08 1.09

Longitude (cos) ~ Latitude + Longitude (sin)  + Slope + Richness + MAT + MAP + PS + Sand + pH + TP 0.20 1.24

Slope ~ Latitude + Longitude (sin)  + Longitude (cos) + Richness + MAT + MAP + PS + Sand + pH + TP 0.44 1.77

Richness~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + MAT + MAP + PS + Sand + pH + TP 0.37 1.60

MAT ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAP + PS + Sand + pH + TP 0.37 1.59

MAP ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAT + PS + Sand + pH + TP 0.49 1.96

PS ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAT + MAP + Sand + pH + TP 0.48 1.92

Sand ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAT + MAP + PS + pH + TP 0.19 1.23

pH ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAT + MAP + PS + Sand + TP 0.70 3.30

TP ~ Latitude + Longitude (sin)  + Longitude (cos) + Slope + Richness + MAT + MAP + PS + Sand + pH 0.27 1.37
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Appendix S3. Akaike Information Criterion (AICc and ∆AICc) of the best selected models for 

the trait distributions of maximum plant height and specific leaf area (SLA). We present the 

best selected models for the mean, variance, skewness and kurtosis. The model “CLIMATE” 

included species richness, geography, topography and climate variables (MAT, MAP, 

precipitation seasonality). The model “SOIL” included species richness, geography, 

topography and soil variables (sand, pH, total phosphorus). The model “CLIMATE+SOIL” 

included all predictors of these models. The model “CLIMATE+SOIL+INTERACTIONS” 

included all predictors of the model “CLIMATE+SOIL”, and all possible two-way interactions 

between MAT, MAP, precipitation seasonality, sand content, pH and total phosphorus.  

MAT: mean annual temperature, MAP: mean annual precipitation. 

 

 

 

 

 

 

AICc ∆AICc adj. R² AICc ∆AICc adj. R² AICc ∆AICc adj. R² AICc ∆AICc adj. R²

CLIMATE 139.7 49.84 0.7 269.7 12.53 0.499 511.6 16.41 0.103 312.7 12.53 0.155

SOIL 170.6 80.74 0.603 269.6 12.43 0.499 520.3 25.11 0.007 313.3 13.13 0.151

CLIMATE + 

SOIL
135.9 46.04 0.716 265.1 7.93 0.522 510.9 15.71 0.147 307.8 7.63 0.196

CLIMATE + 

SOIL + 

INTERACTIONS

89.86 0 0.817 257.17 0 0.587 495.19 0 0.275 300.17 0 0.262

AICc ∆AICc adj. R² AICc ∆AICc adj. R² AICc ∆AICc adj. R² AICc ∆AICc adj. R²

CLIMATE 165.4 69.48 0.266 326.3 10.66 0.272 512.6 21.36 0.205 339.9 7.52 0.195

SOIL 172.5 76.58 0.206 338.2 22.56 0.189 516.5 25.26 0.197 345.6 13.22 0.175

CLIMATE + 

SOIL
156.6 60.68 0.332 319.4 3.76 0.326 512.6 21.36 0.205 338 5.62 0.224

CLIMATE + 

SOIL + 

INTERACTIONS

95.92 0 0.638 315.64 0 0.415 491.24 0 0.408 332.38 0 0.283

Maximum plant height 

Models

Mean Variance Skewness Kurtosis

Specific leaf area (SLA)

Models

Mean Variance Skewness Kurtosis
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Appendix S4. Results of multiple regression models for the trait distributions of maximum 

plant height. We tested the effects species richness, geography, topography, climate variables, 

soil variables and all pair-wise interactions on the mean, variance, skewness and kurtosis of 

trait distributions (model “CLIMATE + SOIL + INTERACTIONS” in Appendix S3). We 

provided Model r², adj r², AICc and weight for the selected models (∆AICc ≤ 2). 

MAT: mean annual temperature; MAP: mean annual precipitation; PS: precipitation 

seasonality, TP: total phosphorus 
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MAT MAT MAP MAT MAT MAT MAP MAP MAP PS PS PS pH pH Sand

X X X X X X X X X X X X X X X

x x² x x² x x² x x² x x² x x² MAP PS PS pH Sand TP pH Sand TP pH Sand TP Sand TP TP

0.85 0.82 89.86 0.00 0.26

0.85 0.82 90.48 0.61 0.19

0.84 0.82 90.49 0.63 0.19

0.85 0.81 90.69 0.83 0.17

0.84 0.82 91.67 1.81 0.10

0.85 0.82 91.85 1.99 0.09

0.65 0.59 257.17 0.00 0.19

0.63 0.58 257.61 0.44 0.15

0.64 0.59 257.92 0.75 0.13

0.66 0.60 258.17 1.00 0.11

0.65 0.59 258.56 1.40 0.09

0.65 0.59 258.61 1.44 0.09

0.64 0.58 258.82 1.65 0.08

0.65 0.59 258.89 1.72 0.08

0.63 0.58 258.97 1.80 0.08

0.41 0.30 495.19 0.00 0.42

0.35 0.26 496.10 0.90 0.27

0.35 0.26 497.04 1.85 0.17

0.37 0.27 497.19 2.00 0.15

0.33 0.26 300.17 0.00 0.22

0.38 0.29 301.39 1.22 0.12

0.33 0.26 301.41 1.25 0.12

0.31 0.24 301.79 1.62 0.10

0.33 0.26 301.90 1.74 0.09

0.31 0.24 302.01 1.85 0.09

0.31 0.24 302.05 1.88 0.09

0.36 0.28 302.14 1.97 0.08

0.39 0.29 302.14 1.97 0.08

ΔAICc Weight

Mean

Skewness

Kurtosis

Variance

pH Sand TP
r² adj. r² AICcHeight Geo / Topo Rich

MAT MAP PS
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Appendix S5. Results of multiple regression models for the trait distributions of specific leaf 

area (SLA). We tested the effects of species richness, geography, topography, climate variables, 

soil variables and all pair-wise interactions on the mean, variance, skewness and kurtosis of 

trait distributions (model “CLIMATE + SOIL + INTERACTIONS” in Appendix S3). We 

provided Model r², adj r², AICc and weight for the selected models (∆AICc ≤ 2). 

MAT: mean annual temperature; MAP: mean annual precipitation; PS: precipitation 

seasonality, TP: total phosphorus 
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MAT MAT MAP MAT MAT MAT MAP MAP MAP PS PS PS pH pH Sand

X X X X X X X X X X X X X X X

x x² x x² x x² x x² x x² x x² MAP PS PS pH Sand TP pH Sand TP pH Sand TP Sand TP TP

0.70 0.64 95.92 0.00 0.07

0.71 0.65 95.99 0.07 0.07

0.71 0.65 95.99 0.07 0.07

0.70 0.64 96.11 0.18 0.06

0.70 0.64 96.17 0.25 0.06

0.70 0.64 96.19 0.26 0.06

0.69 0.63 96.25 0.33 0.06

0.72 0.65 96.53 0.61 0.05

0.72 0.65 96.66 0.73 0.05

0.71 0.64 96.87 0.94 0.04

0.71 0.65 97.04 1.12 0.04

0.71 0.64 97.07 1.14 0.04

0.70 0.64 97.16 1.23 0.04

0.71 0.64 97.21 1.28 0.04

0.67 0.62 97.22 1.30 0.04

0.71 0.64 97.23 1.31 0.04

0.68 0.63 97.24 1.31 0.04

0.72 0.65 97.33 1.41 0.03

0.70 0.64 97.37 1.45 0.03

0.70 0.64 97.77 1.85 0.03

0.66 0.61 97.78 1.85 0.03

0.70 0.64 97.80 1.88 0.03

0.51 0.42 315.64 0.00 0.43

0.52 0.42 316.06 0.42 0.34

0.50 0.40 316.88 1.24 0.23

0.50 0.41 491.24 0.00 0.22

0.49 0.40 491.74 0.51 0.17

0.49 0.40 491.76 0.52 0.17

0.50 0.41 492.25 1.01 0.14

0.51 0.41 492.71 1.48 0.11

0.50 0.41 492.86 1.63 0.10

0.49 0.40 493.10 1.86 0.09

0.38 0.29 332.38 0.00 0.22

0.39 0.30 333.25 0.87 0.14

0.36 0.28 333.28 0.90 0.14

0.32 0.25 333.81 1.43 0.11

0.39 0.29 333.93 1.55 0.10

0.34 0.27 334.08 1.70 0.10

0.40 0.30 334.12 1.74 0.09

0.37 0.28 334.35 1.97 0.08

Mean

Variance

Skewness

Kurtosis

pH Sand TP
SLA Geo / Topo Rich

MAT MAP PS
AICc ΔAICc Weightr² adj. r²
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Appendix S6. Data used in the study. 

Lat: Latitude, Long_sin: sinus Longitude; Long_cos: cosinus Longitude; MAT: mean annual temperature (°C), MAP: mean annual precipitation 

(mm), PS: precipitation seasonality; Sand: sand content (%); TP: total phosphorus (mgP.g-1 soil); Var: variance; Skew: Skewness; Kurt: Kurtosis; 

H: maximum plant height (cm), SLA: Specific Leaf Area (cm².g-1) 

 

Country Lat Long_sin Long_cos Slope MAT MAP PS Sand pH TP Richness Mean_H Var_H Skew_H Kurt_H Mean_SLA Var_SLA Skew_SLA Kurt_SLA 

Argentina 
-

41.81 
-0.53 0.85 1.1 7 217 51 72.86 6.83 0.90 7 3.71 0.28 -0.76 1.51 4.06 0.12 0.68 -0.01 

Argentina 
-

41.24 
-0.97 0.26 0.6 8 375 70 90.25 6.88 0.51 10 3.87 0.18 -1.28 2.96 4.29 0.16 0.48 -0.97 

Argentina 
-

41.11 
-0.98 -0.20 5.7 7 568 69 79.42 6.60 1.13 10 3.53 0.16 -0.53 -0.04 4.64 0.46 -0.08 -1.47 

Argentina 
-

41.00 
-0.93 -0.37 1.1 7 685 66 67.18 6.33 1.45 9 3.79 0.07 -2.71 9.51 4.71 0.17 -1.51 0.96 

Argentina 
-

41.03 
-0.99 0.16 0.6 8 416 72 77.67 6.77 0.72 9 3.90 0.29 -1.36 3.14 4.13 0.29 0.87 0.77 

Argentina 
-

38.76 
-0.78 -0.62 0.5 15 320 33 83.53 7.70 0.46 9 4.85 0.68 -0.17 0.24 4.26 0.16 1.38 2.61 

Argentina 
-

31.49 
0.97 -0.26 1.0 19 267 84 84.69 8.66 0.38 5 5.34 0.86 -1.51 0.50 3.62 1.42 -1.23 0.27 

Argentina 
-

31.72 
0.96 0.29 1.5 18 179 84 81.75 9.28 0.62 5 5.48 0.54 -2.38 4.00 3.57 0.81 -1.74 2.35 

Australia 
-

34.22 
-0.92 -0.38 0.5 17 317 13 74.20 7.01 0.13 12 5.17 2.47 0.40 -1.72 3.72 0.75 -0.16 -1.82 

Australia 
-

34.20 
-0.93 -0.38 0.5 17 318 13 76.47 7.19 0.18 16 5.78 1.86 -0.74 -1.10 3.66 0.28 -0.43 -0.07 

Australia 
-

34.25 
-0.90 -0.44 0.5 17 312 14 74.00 6.81 0.16 16 5.73 2.27 -0.36 -1.64 3.38 0.48 0.43 -1.26 

Australia 
-

34.02 
-0.91 -0.42 0.5 17 308 13 70.63 8.04 0.18 12 5.86 1.95 -0.71 -0.72 3.20 0.37 1.42 1.20 

Australia 
-

34.11 
-0.92 -0.39 0.5 17 315 13 72.99 6.89 0.17 12 5.53 2.69 -0.14 -1.88 3.33 0.61 0.72 -1.22 

Australia 
-

34.20 
-0.87 -0.50 0.5 17 310 14 55.22 7.47 0.15 13 5.86 2.85 -0.67 -1.46 3.21 0.42 0.81 -0.80 

Australia 
-

33.96 
-0.89 -0.46 0.5 17 312 13 82.71 7.27 0.16 10 6.05 1.55 -1.40 0.82 3.48 0.33 -0.25 -0.99 
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Australia 
-

33.97 
-0.96 -0.27 0.5 17 311 13 72.36 7.99 0.17 13 6.04 1.27 -1.63 0.92 3.23 0.31 0.94 -0.24 

Australia 
-

34.11 
-0.93 -0.37 0.5 17 317 13 69.40 7.08 0.18 15 5.29 2.21 -0.05 -1.63 3.62 0.38 -0.28 -0.99 

Australia 
-

33.96 
-0.89 -0.46 0.5 17 312 13 77.56 6.85 0.15 11 6.65 1.48 -2.23 3.19 2.91 0.24 2.60 5.65 

Australia 
-

33.93 
-0.97 -0.25 0.5 17 312 12 76.17 7.81 0.23 14 6.26 1.75 -1.32 0.07 3.19 0.30 0.51 -1.21 

Australia 
-

33.94 
-0.96 -0.27 0.5 17 312 12 72.70 7.20 0.15 15 6.25 1.82 -1.37 0.48 3.20 0.43 1.00 -0.32 

Australia 
-

32.16 
0.98 0.19 5.0 18 405 19 75.75 6.20 0.23 21 5.38 0.72 -1.14 1.44 4.03 0.10 3.22 11.80 

Australia 
-

31.56 
0.97 -0.22 4.0 18 448 24 63.97 6.27 0.28 31 5.48 1.49 -0.64 -0.22 3.73 0.33 -0.14 0.61 

Australia 
-

31.32 
0.69 -0.73 2.0 19 476 26 47.93 6.62 0.30 18 6.18 0.80 -1.22 3.27 4.05 0.06 2.37 15.28 

Australia 
-

31.30 
0.68 -0.73 3.5 19 477 26 49.38 6.59 0.41 29 5.06 2.19 -0.12 -1.51 4.11 0.25 1.99 3.38 

Australia 
-

31.86 
-0.05 -1.00 3.0 18 508 25 28.11 6.12 0.68 17 4.87 1.76 0.71 -0.65 4.81 0.77 -0.98 -0.05 

Australia 
-

32.12 
0.84 -0.55 0.2 18 450 19 47.55 6.39 0.34 17 5.55 1.26 -1.01 0.44 4.08 0.07 -1.87 15.81 

Chile 
-

34.11 
-0.79 -0.61 14.6 17 442 108 63.16 6.97 0.23 3 5.38 0.38 0.96 2.21 4.72 0.03 -1.10 2.36 

Chile 
-

31.20 
-0.62 -0.78 12.0 14 177 114 62.97 6.76 0.27 2 4.70 0.08 -0.78 0.32 4.83 0.01 0.95 -1.09 

Chile 
-

31.20 
-0.62 -0.78 11.9 14 177 114 69.31 6.33 0.28 2 4.67 0.10 -0.36 0.96 4.83 0.01 0.97 -1.07 

China 49.26 -0.20 0.98 5.0 -1 344 113 56.60 6.53 0.67 11 3.91 0.17 -2.12 3.28 5.03 0.04 -1.94 2.09 

China 49.49 -0.83 0.56 6.0 -1 329 116 82.71 6.53 0.43 14 3.49 0.35 -0.24 -1.31 4.72 0.06 0.91 -0.63 

China 49.53 -0.86 -0.51 8.0 -2 314 120 69.57 6.52 0.74 12 3.59 0.09 -0.56 -0.31 3.97 0.28 0.94 -0.72 

China 49.03 -0.69 -0.73 8.0 0 273 124 72.45 6.93 0.65 9 3.38 0.23 -0.71 0.33 4.16 0.29 0.19 -1.49 

China 48.22 0.22 -0.98 6.0 2 194 105 72.61 6.86 0.43 10 3.41 0.67 0.00 -1.14 4.17 0.30 0.23 -1.44 

Ecuador -4.01 0.81 -0.59 17.4 21 847 82 47.00 6.74 0.53 4 4.86 0.08 -1.66 1.02 5.01 0.73 -2.41 4.10 

Israel 31.36 -0.26 -0.97 8.0 19 288 104 55.14 8.22 0.63 5 3.09 0.19 1.04 0.53 3.03 0.03 4.06 14.56 

Israel 31.36 -0.26 -0.97 8.1 19 288 104 56.53 7.97 0.68 6 3.25 0.16 0.57 -0.68 3.02 0.02 5.17 24.84 

Israel 31.36 -0.26 -0.97 9.0 19 288 104 60.54 8.53 0.68 6 3.13 0.14 1.39 1.95 3.02 0.02 5.47 28.90 

Israel 31.36 -0.26 -0.97 9.2 19 288 104 62.29 8.45 0.67 5 3.08 0.09 2.22 6.76 3.01 0.01 8.83 79.16 

Israel 31.36 -0.26 -0.97 9.3 19 288 104 60.03 8.27 0.75 6 3.08 0.12 2.96 10.57 3.02 0.03 5.40 28.29 

Israel 31.36 -0.26 -0.97 7.9 19 288 104 40.72 8.39 0.51 6 3.08 0.28 0.95 -0.21 3.07 0.05 2.77 5.67 

Kenya 0.35 -0.72 0.69 2.0 18 652 56 48.26 6.27 0.41 8 4.42 0.51 -0.15 -0.83 4.53 0.45 0.04 -1.81 
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Mexico 23.20 -0.68 0.74 2.0 17 345 63 57.49 7.99 0.64 8 3.49 0.54 0.58 -1.08 4.67 0.42 -1.27 0.03 

Mexico 21.77 -0.91 0.41 5.5 16 598 82 58.53 6.73 0.15 5 3.11 0.23 1.11 -0.41 4.83 0.25 -2.19 3.84 

Mexico 21.77 -0.91 0.42 7.5 16 598 82 51.55 6.97 0.13 5 3.21 0.41 1.12 -0.55 4.87 0.29 -2.67 5.24 

Morocco 34.16 -0.70 -0.72 5.3 15 294 47 58.93 8.35 0.58 9 4.23 0.63 -2.80 6.41 3.44 0.12 2.71 5.57 

Morocco 34.43 -0.81 -0.58 5.8 15 321 50 52.89 8.33 0.67 10 4.45 0.12 -8.49 80.74 3.44 0.15 2.81 5.95 

Morocco 34.47 0.48 -0.88 4.0 16 401 55 42.80 8.43 0.53 6 4.46 0.07 -7.09 57.21 3.37 0.06 4.91 22.21 

Morocco 34.44 0.44 -0.90 14.3 15 399 53 54.25 8.36 0.38 7 4.40 0.23 -4.88 22.63 3.37 0.06 4.83 21.79 

Morocco 34.31 -0.91 -0.42 7.0 14 377 48 51.51 8.38 0.60 9 4.32 0.55 -3.92 13.87 3.40 0.10 3.80 12.98 

Morocco 33.87 0.47 -0.88 7.3 15 307 45 66.28 8.39 0.37 7 4.12 1.19 -2.60 4.80 3.50 0.21 2.05 2.25 

Morocco 33.93 0.41 -0.91 10.8 16 289 46 72.62 8.64 0.26 2 4.31 0.45 -3.17 8.04 3.41 0.10 3.17 8.04 

Morocco 33.07 -0.40 -0.92 5.8 15 310 46 67.52 8.35 0.31 5 4.42 0.23 -6.53 42.71 3.36 0.05 5.55 29.09 

Morocco 34.63 0.27 -0.96 20.0 16 339 56 55.55 8.49 0.30 8 4.30 0.18 -2.52 8.18 3.65 0.40 1.45 0.26 

Morocco 34.63 0.32 -0.95 16.5 15 385 54 42.78 8.35 0.44 6 4.31 0.17 -3.52 17.03 3.86 0.46 0.48 -1.76 

Spain 39.05 -0.79 -0.61 4.5 14 415 34 39.30 8.26 0.28 12 4.46 0.67 -1.94 4.17 3.58 0.18 1.35 0.50 

Spain 39.05 -0.79 -0.61 4.5 14 415 34 45.53 8.37 0.33 9 4.32 0.36 -3.20 8.77 3.44 0.14 2.69 5.42 

Spain 40.33 0.28 -0.96 20.8 14 439 39 44.28 8.26 0.41 7 4.62 0.26 0.54 -0.97 4.02 0.37 0.07 -1.61 

Spain 40.32 0.28 -0.96 18.8 14 436 38 48.10 8.35 0.45 10 4.32 0.11 -2.13 6.25 3.87 0.47 0.43 -1.79 

Spain 40.25 0.11 -0.99 20.5 14 418 37 63.74 7.75 0.14 13 4.26 0.22 -1.94 2.16 3.91 0.50 0.36 -1.84 

Spain 37.80 -0.96 0.26 21.0 17 339 43 49.85 8.11 0.42 24 4.23 0.41 -0.58 0.70 3.72 0.32 0.97 -0.70 

Spain 37.80 -0.96 0.26 15.8 16 353 43 50.12 8.20 0.29 20 4.01 0.37 -0.71 -1.04 3.92 0.42 0.31 -1.71 

Spain 40.27 0.36 -0.93 14.0 14 436 38 58.37 7.40 0.34 15 4.67 0.43 -0.74 0.74 3.89 0.26 0.31 -1.13 

Spain 40.27 0.36 -0.93 15.8 14 436 38 60.20 7.41 0.19 7 4.31 0.13 -2.20 4.35 3.79 0.42 0.64 -1.56 

Spain 40.14 -0.01 -1.00 27.5 14 417 36 58.15 8.12 0.13 8 4.37 0.13 -3.19 8.81 3.66 0.37 1.19 -0.55 

Spain 40.07 -0.24 -0.97 18.8 13 462 32 62.24 7.78 0.42 29 4.59 1.61 0.54 0.10 3.79 0.30 0.72 -0.77 

Spain 40.07 -0.24 -0.97 21.5 13 465 32 48.76 7.76 0.43 20 4.14 0.37 -1.45 1.29 3.71 0.35 0.97 -0.84 

Spain 40.21 0.27 -0.96 14.8 14 432 37 56.05 8.07 0.31 16 4.32 0.48 -1.06 1.43 3.66 0.26 1.13 -0.28 

Spain 40.21 0.27 -0.96 22.0 14 432 37 54.11 8.26 0.34 13 4.43 0.09 -4.31 19.78 3.38 0.07 4.42 17.91 

Spain 39.99 0.46 -0.89 14.5 15 412 38 63.76 8.20 0.32 7 4.70 0.25 0.10 -0.20 3.79 0.29 0.72 -0.85 

Spain 39.99 0.46 -0.89 10.3 15 412 38 47.64 8.15 0.49 5 4.47 0.04 -6.79 45.36 3.34 0.03 6.71 43.68 

Spain 39.99 0.46 -0.89 16.5 15 409 37 61.78 7.76 0.19 7 4.19 0.28 -1.39 0.24 3.84 0.49 0.65 -1.51 

BITUMEN || ISSN: 0006-3916                                         2024 || Volume 56  Issue: 11

DOI:10.1789/Bmen5611-02                     page: 56                      https://bitumen.cfd/



Spain 37.82 -0.99 -0.10 2.9 15 378 40 46.15 7.58 0.27 20 4.40 0.29 -0.61 1.75 3.88 0.43 0.52 -1.44 

Spain 37.82 -0.99 -0.10 1.3 15 378 40 49.95 7.65 0.28 16 4.35 0.15 -3.03 10.12 3.82 0.41 0.53 -1.69 

Spain 40.19 0.35 -0.94 17.8 14 429 39 50.19 8.22 0.44 11 4.62 0.17 0.19 2.11 3.58 0.20 1.45 0.82 

Spain 40.04 0.07 -1.00 27.8 14 416 36 55.99 7.71 0.09 11 4.34 0.21 -2.49 4.43 3.50 0.22 2.35 3.79 

Spain 39.21 -0.59 -0.81 3.5 14 426 34 53.95 8.31 0.54 11 4.63 1.12 0.88 0.49 3.99 0.38 0.23 -1.40 

Spain 39.21 -0.59 -0.81 1.8 14 422 34 54.14 8.30 0.42 11 3.99 0.21 -0.77 -0.23 4.40 0.42 -0.99 -0.83 

Spain 38.59 -0.93 0.36 14.5 14 454 34 55.73 8.31 0.42 29 4.30 0.30 -0.35 2.60 3.96 0.45 0.27 -1.70 

Spain 38.59 -0.93 0.36 18.5 14 444 34 61.14 8.17 0.36 19 4.05 0.51 -1.32 0.31 3.88 0.42 0.40 -1.70 

Spain 40.35 -0.26 -0.97 10.3 14 405 33 81.68 7.74 0.28 26 4.41 0.55 0.68 3.19 4.14 0.38 -0.32 -1.58 

Spain 40.35 -0.26 -0.97 8.0 14 405 33 72.69 7.58 0.30 26 4.13 0.25 -1.39 2.24 4.23 0.38 -0.68 -1.35 

Spain 38.79 -0.99 -0.15 16.3 14 422 34 59.63 8.41 0.53 15 4.12 0.25 0.52 10.92 4.43 0.29 -1.45 0.33 

Spain 38.31 -0.69 0.73 18.8 17 353 46 73.76 8.58 0.32 15 3.53 1.37 0.49 -0.91 3.99 3.10 -2.49 4.56 

Spain 39.04 -0.77 -0.63 8.3 14 423 34 56.95 8.36 0.28 9 4.92 0.36 -0.64 -1.15 4.25 0.15 0.52 -1.67 

Spain 39.01 -0.46 -0.89 6.2 13 468 34 60.88 8.38 0.44 10 4.16 0.16 2.95 15.25 4.70 0.03 -0.56 14.17 

Spain 37.72 -0.96 -0.26 0.5 16 341 42 77.34 8.68 0.53 10 3.80 0.75 -1.42 0.53 4.29 0.34 -0.92 -0.87 

Spain 40.16 -0.25 -0.97 21.0 13 448 31 49.84 8.41 0.26 29 4.52 0.53 -0.25 -0.68 4.15 0.28 0.03 -0.73 

Spain 37.92 -0.99 0.10 2.3 16 344 43 39.89 8.53 0.28 8 4.09 0.18 -1.53 1.51 4.43 0.32 -1.43 0.17 

Spain 37.73 -0.98 -0.21 9.1 16 339 42 63.82 8.40 0.43 7 4.05 0.28 -3.59 11.53 4.65 0.07 -4.10 17.11 

Spain 38.31 -0.82 0.57 15.4 16 398 40 39.60 8.31 0.57 19 4.34 0.44 0.03 0.27 4.39 0.24 -0.99 -0.24 

Spain 40.37 0.24 -0.97 12.8 13 453 37 48.24 8.39 0.34 10 4.21 0.13 0.63 5.43 4.45 0.42 -0.98 -0.72 

Spain 37.59 -0.94 0.33 4.3 18 294 48 44.11 8.38 0.90 8 4.22 0.23 -0.83 0.26 5.10 0.12 -1.64 5.29 

Spain 39.54 -0.97 -0.23 8.5 12 466 29 54.56 8.45 0.48 20 4.24 0.79 1.02 1.06 4.50 0.15 -0.78 0.76 

Spain 38.07 -1.00 0.04 7.8 16 341 42 54.16 8.35 0.21 14 3.86 0.28 -0.62 0.07 4.44 0.22 -0.95 -0.61 

Spain 39.13 -0.71 -0.70 11.8 14 420 34 53.15 8.36 0.28 7 4.49 0.29 1.36 1.58 4.33 0.31 -0.83 -0.89 

Spain 38.77 -0.85 0.52 10.8 14 457 34 58.76 8.40 0.32 16 4.06 0.31 0.26 2.37 4.57 0.12 -2.05 4.02 

Spain 39.00 -0.30 -0.95 3.3 13 467 36 54.04 8.35 0.49 8 3.78 0.44 1.96 8.73 4.48 0.11 -0.78 -0.68 

Spain 39.05 -0.54 -0.84 4.8 13 446 35 41.83 8.36 0.32 12 4.23 0.41 2.61 10.43 4.46 0.30 -1.40 0.25 

Spain 40.02 -0.26 -0.97 20.0 13 470 31 53.30 8.11 0.21 21 4.19 0.74 0.18 -0.86 4.18 0.29 -0.03 -0.89 

Spain 40.26 0.34 -0.94 21.8 14 437 38 56.93 8.44 0.24 11 4.49 0.29 0.25 0.64 4.18 0.37 -0.39 -1.52 

Spain 37.63 -0.89 -0.45 16.0 14 405 39 73.09 8.57 0.22 9 3.82 0.45 -1.87 2.51 4.55 0.13 -1.94 2.99 
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Spain 40.11 0.32 -0.95 18.5 14 441 37 46.64 8.41 0.22 14 4.93 0.24 -0.95 2.26 3.66 0.11 0.10 -1.34 

Spain 39.86 -0.56 -0.83 14.8 13 479 31 46.43 8.35 0.26 16 4.08 0.22 -1.01 2.32 4.38 0.21 -0.24 -1.19 

Spain 37.89 -0.99 -0.13 21.8 13 468 35 42.62 8.31 0.27 17 3.84 0.19 0.35 3.00 4.49 0.17 -1.27 1.20 

Tunisia 35.17 0.68 -0.73 5.0 16 355 27 56.71 8.44 0.34 6 4.24 0.28 -1.63 1.21 3.73 0.37 0.85 -1.17 

Tunisia 33.52 -0.52 -0.85 22.0 19 221 60 65.87 8.50 0.20 6 4.10 0.26 -1.59 2.14 3.95 0.69 0.40 -1.71 

Tunisia 35.16 0.30 -0.95 4.0 17 274 29 59.81 8.44 0.25 6 4.47 0.05 -6.42 40.75 3.36 0.05 5.34 27.75 

Tunisia 32.98 -0.88 -0.48 1.0 20 141 66 81.17 8.48 0.16 4 4.03 0.27 -0.74 -0.66 4.10 0.65 0.12 -1.87 

Tunisia 34.69 -0.88 -0.47 3.0 18 193 49 59.20 8.01 0.26 8 4.57 0.14 -1.65 6.20 3.69 0.27 1.22 0.79 

Tunisia 33.76 -0.57 -0.82 1.5 20 175 60 69.14 8.09 0.26 8 4.03 0.41 -0.76 -1.31 3.86 0.37 0.33 -1.67 

Tunisia 35.63 -0.26 -0.97 2.0 18 314 35 74.52 8.16 0.25 5 4.47 0.03 -0.39 4.83 3.60 0.36 1.89 2.17 

Tunisia 35.86 -0.34 -0.94 1.5 17 407 38 54.76 7.96 0.37 6 4.77 0.47 0.70 -0.94 3.97 0.36 0.19 -1.33 

USA 37.85 0.98 -0.21 3.0 11 205 32 84.03 8.61 0.15 7 4.47 0.10 -1.78 14.44 4.11 0.26 0.73 -0.56 

USA 37.51 0.88 0.48 4.0 10 257 27 82.39 8.31 0.30 6 3.39 0.64 0.54 -1.66 4.73 0.11 -0.27 -1.86 

USA 33.75 -0.42 -0.91 1.0 18 203 48 85.98 8.45 0.86 5 4.38 0.35 0.48 -1.04 4.16 0.06 0.43 -1.07 

USA 33.75 -0.42 -0.91 1.0 18 193 45 87.83 8.13 0.80 5 4.60 0.13 -1.26 1.37 4.29 0.11 -0.20 -1.87 

USA 33.75 -0.43 -0.90 1.5 18 207 47 79.37 8.07 0.68 5 4.47 0.34 0.21 -1.10 4.15 0.07 0.52 -1.10 

USA 33.75 -0.42 -0.91 1.0 18 203 48 79.18 7.89 0.77 4 4.43 0.21 -0.57 -1.66 4.05 0.06 1.32 0.24 

USA 33.75 -0.41 -0.91 1.5 18 197 47 86.83 8.13 0.50 5 4.17 0.21 0.65 -1.37 4.22 0.05 -0.04 -0.68 

USA 33.75 -0.43 -0.90 1.0 18 207 47 76.00 8.44 0.71 5 4.36 0.31 0.48 -0.90 4.27 0.07 -0.12 -1.27 

Venezuela 8.43 -0.54 -0.84 3.5 27 1177 79 94.54 5.54 0.05 6 4.16 0.24 1.05 7.26 3.56 0.20 -0.82 -0.74 

Venezuela 8.43 -0.54 -0.84 3.5 27 1177 79 92.73 5.15 0.07 7 3.90 0.18 0.82 1.21 3.25 0.24 0.41 -1.68 

Venezuela 8.32 -0.71 -0.71 2.9 27 1171 78 88.28 5.61 0.09 3 4.26 0.12 -0.66 3.93 3.67 0.13 -1.90 1.62 
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