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ABSTRACT 

 

Quantitative structure – property / activity relationships (QSPRs/QSARs) represent efficient 

and in most cases suitable and accurate computational tools to estimate endpoints of 

substances with geometric characteristics described adequately by both similarity and 

variability of molecular structure. Unfortunately, in many cases the QSPR/QSAR analysis is 

not possible for various nanomaterials. A successful  technique to build up a predictive 

model for an endpoint related to nanomaterials involves holistic elucidation of the endpoint 

as a mathematical function of all available eclectic data, such as physicochemical and 

biochemical conditions and circumstances. This chapter offers an introduction to the subject 

and provides examples of models based on eclectic data represented by so-called quasi-

SMILES, analogs of the traditional SMILES utilized in the “classic” QSPR/QSAR analyses. 

In contrast to traditional SMILES, quasi-SMILES are representation of all available eclectic 

data (not only information about the molecular structure). 

 

Keywords: nanomaterial; Monte Carlo method; quasi-SMILES; quasi-QSPR/QSAR; nano-

QSPR/QSAR; CORAL software 

 

 

1. Introduction 

 

The influence of various nanomaterials on the everyday life gradually increase owing 

to their potential be useful for different applications in medicine (De Jong and Borm, 2008; 

Webster et al., 2013; Toropova et al., 2016). 

As a rule, generally, an experimental measurement of an endpoint is not cheap. In 

addition, performing of the experiment demands considerable time. This promotes 

developments of alternative techniques, able to provide investigated data faster and more 

efficient. Such techniques are available in a large pool of computational chemistry methods. 

Specifically, the techniques of calculations of endpoints, that are able to include 

experimental data related to untested but similar substances, become attractive alternative 

for the experiment. Quantitative structure – property / activity relationships 

(QSPRs/QSARs) represent the practical application of the above-mentioned alternative. The 

theory and praxis of the QSPR/QSAR have impressive  record of successful utilizations for 

prediction of endpoints related to organic (Toropova et al., 2011a), inorganic (Toropova et 

al., 2011b), organometallic (Toropova et al., 2011c), and polymeric (Duchowicz et al., 2015) 

species.  

The evolution of the QSPR/QSAR theory/praxis involves a few components. It 

benefits on improvements of algorithms of the analysis of available data that allow 

predicting physicochemical and/or biochemical behavior of substances which were not 

examined in the experiment. The second, less discussed component is of an equal 

importance. It involves establishment of the definition of the task (target). Historically, the 

development of correlations “descriptor - endpoint” for a sole endpoint was the main aim of 

QSPR/QSAR modeling in the beginning of applications of this approach (Wiener, 1947a,b; 

BITUMEN || ISSN: 0006-3916                                         2024 || Volume 56  Issue: 10

DOI:10.1789/Bmen5610-03                     page: 16                      https://bitumen.cfd/



1948; Gutman et al., 2005, 2009; Hosoya, 1972; Bonchev et al., 1980). Later the 

QSPR/QSAR analysis aimed to more challenged tasks – prediction of not a single property 

but a group of important and sometimes interdependent endpoints (Speck-Planche et al., 

2011, 2012a,b, 2013).   

The classes of substances considered for the QSPR/QSAR analysis has broaden over 

the years. An important impetus for development of novel approaches arrived after 

applications of classical QSAR methodology to nanomaterials – unique class of chemical 

species - failed. The growing importance of these species is illustrates by fast growing 

number of publications dedicated to nanomaterials. In 2000 there was about hundred papers 

related to keyword “nanomaterial”. This number expands to eleven thousands in 2015 

(Figure 1).  

Obviously, there have been numerous attempts to utilize the QSPR/QSAR approach 

for nanomaterials with the application of various "nano-descriptors" (Oksel et al., 2015). 

However, approaches focused on building up “nano-QSAR” were based on hardly 

accessible physicochemical characteristics of nanomaterials (Sayes and Ivanov, 2010; 

Glotzer and Solomon, 2007). Interestingly, also the traditional descriptors appropriate for 

substances, which are not nanomaterials were also examined as a tool to build up "nano-

QSAR" (Fourches et al., 2011). However, in this work, all nanoparticles have the same 

“nano” metal core, and the difference between nanoparticles is defined solely by small 

organic molecules ((Fourches et al., 2011). Naturally, for such species traditional descriptors 

can be quite appropriate ones. 

So-called optimal descriptors provide possibility to build up predictive model for 

various nanomaterials using ALL available eclectic data represented by quasi-SMILES. This 

holistic approach was successfully applied for the development of model for membrane 

damage by ZnO and TiO2 nanoparticles (Toropova and Toropov, 2013; Toropova et al., 

2014); mutagenicity of fullerene (Toropov and Toropova, 2014); mutagenic potential of 

multi-walled carbon-nanotubes (Toropov and Toropova, 2015); and cytotoxicity of metal 

oxide nanoparticles to bacteria Escherichia coli  (Toropova et al., 2012).  

We believe that the increasing interest in application of efficient methods that 

reliably predict characteristics of nanomaterials justify review of such approaches and the 

results obtained using those techniques. The aims of this chapter are: (i) description of the 

method of building up quasi-SMILES; and (ii) introduction of principles of development of 

predictive models based on quasi-SMILES. The second aim could be efficiently 

accomplished using the CORAL software available on the Internet (CORAL, 

http://www.insilico.eu/coral). The readers are welcome to carry out their own research 

projects using the CORAL program. 

It is to be noted, today the quasi-SMILES likely have no alternative in the case of a 

situation where one should construct a model based on eclectic data, such as 

physicochemical and biochemical conditions of a phenomena, presence of large number of 

factors which can impact the phenomena, together with uncertainty in correctness of 

classification of all factors into(i) factors with significant impact; and (ii) factors with 

neglectable influence. Unfortunately, the above-mentioned indeterminacy often takes place 

in various stages of the drug discovery. 

 

2. Method 

 

2.1. SMILES and quasi-SMILES 

 

Simplified molecular input-line entry system (SMILES) has been introduced by 

Weiniger and collaborators (Weininger, 1988, 1990; Weininger et al., 1989). This approach 

allows for simple representation of the molecular structures. 
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There are defined equivalences between the representation of the molecular structure 

by graphs and using SMILES approach. However, one needs to be also aware about their 

significant distinctions. Those are reviewed in the recent publication (Toropov et al., 2011).  

Optimal descriptors have been improved along with advances of QSAR approaches. 

During the initial steps of evolution of the optimal descriptors the molecular graph was the 

basis for building up a QSAR model. Very similar (if not identical) approach has been 

developed for SMILES and SMILES attributes. It can be summarized as follows:  

 

(i) each SMILES of the training set provide a list of attributes, xkj  (Toropov et al., 2011):   

 kmkkk xxxSMILES ,...,, 21→         (1) 

(ii) The Monte Carlo method provides correlation weights for total list of attributes. They 

are extracted from all SMILES notations of the training set which give maximal correlation 

coefficient between examined endpoint and sums of correlation weights for SMILES of the 

training set: 

 

 )(),...,(),(__ 21 kmkk xCWxCWxCWmethodCarloMonte →    (2) 

 

(iii) The predictive model is represented by one-variable linear equation: 
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In the vector and matrix representation this approach can be expressed as the 

following: 
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(4) 

 

where MSk are molecular structures (represented by graph or SMILES); xkj represent 

molecular features extracted from molecular graph or molecular features extracted from 

SMILES. However, an endpoint can be interdependent with some additional impacts related 

to physicochemical and/or biochemical conditions. In this case, instead of traditional 

SMILES, one should utilize an extension of the classical parameters referred to as quasi-

SMILES. The basis of building up quasi-SMILES can be extracted from a graph, SMILES, 

and additional eclectic data. 

In traditional approach one assumes that an endpoint is interdependent from the 

molecular structure. However, there are cases in which this approach has to be revised.  

Obviously, there are also situations where one can expect that the endpoint is interdependent 

with other conditions (temperature, concentration, dose, etc.) and/or circumstances (the 

presence/absence of illumination, magnetic field, different times of exposure, etc.). In this 

case, instead of the paradigm: 

 “Endpoint = F (Molecular Structure)”  

one should apply other paradigm: 

 “Endpoint = F (Eclectic Data)”.  

The quasi-SMILES is a representation of the eclectic data. The above-mentioned scheme 

(1)-(2)-(3) is represented by the quasi-SMILES (Eclectic Data), EDk, correlation weights of 
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symbols from quasi-SMILES, CW(xkj), and experimental data obtained for the studied 

endpoint, Ek: 
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(5) 

 

Thus, the vector of eclectic data represents quasi-SMILES. The quasi-SMILES is a string of 

symbols similar to traditional SMILES, but the meaning of each symbol in quasi-SMILES is 

not necessary the representation of molecular features. Figure 2 shows the general scheme of 

utilization of quasi-SMILES. 

 

2.2. Monte Carlo method 

 

In the case represented by Eq. 5, the Monte Carlo method is used to optimize the 

correlation weights CW(xkj). Here the target function represents the correlation coefficient 

between the endpoints values Ek and sum of correlation weights of symbols from 

corresponding quasi-SMILES extracted from the training set. 

 

The sequence of modification of correlation weights is random for each epoch of the 

Monte Carlo optimization. The epoch represents step-by-step modification of all correlation 

weights involved into building up a QSAR model. It is to be noted that one should define 

threshold in order to classify symbols of quasi-SMILES into two classes: 1) rare; and 2) not 

rare. The correlation weights of rare symbols are fixed to zero, and consequently, they are 

not involved in building up a model. 

In the case of unlimited number of epochs of the Monte Carlo optimization the 

probability of the overtraining is very high. Under such circumstances, better approach is 

instead of unlimited number to use the number of epochs which gives preferable statistics 

for a calibration set. In principle, the measures of the statistical quality of the calibration set 

can be: 1) correlation coefficient between experimental and calculated values of an 

endpoint; and 2) root-mean squared error (RMSE). The graphical illustration (Figure 3) 

shows that these two approaches can give different values of the preferable number of 

epochs. The computational experiments indicate that the correlation coefficient provides 

more reliable criterion, because this criterion often gives preferable predictive potential for 

an external invisible validation set. However, in addition to the preferable number of epochs, 

one should also select preferable threshold (T*). Thus, the goal is the selection of 

satisfactory pair of values: T=T* and N=N*, which gives preferable statistical quality for the 

calibration set (Figure 4). 

 

2.3. Utilization of the model 

 

The result of the Monte Carlo optimization provides the list of correlation weights 

for symbols involved in the model. Each symbol is representation of defined circumstance. 

For instance, (i) temperature range, i.e. 100-110’C can be denoted as a code ‘a’; and 110-

120’C denoted as ‘b’, etc. (ii) dose ranges, i.e. 20-25 mg/kg denoted as ‘c’, 25-30 mg/kg 

denoted as ‘d’, etc. (iii) time of exposure 1 hour denoted as ‘e’; 2 hours denoted as ‘f’, and 

so on, according to corresponding conditions and circumstances.   

Having the data on the correlation weights, one can extract list of symbols from 

corresponding quasi-SMILES and calculate:      

BITUMEN || ISSN: 0006-3916                                         2024 || Volume 56  Issue: 10

DOI:10.1789/Bmen5610-03                     page: 19                      https://bitumen.cfd/



1) 
−

=
SMILESquasix

kj

kj

xCWNTDCW )(*)*,(                                                                   (6) 

2) *)*,(10 NTDCWCCEPk +=                                                                        (7) 

 

2.4. Domain of applicability 

 

The experimental data is used for model development and for evaluation of the 

model quality. The split of data into the “visible” training set (for the described approach the 

“visible” training set contains also the calibration set) and “invisible” validation set has 

apparent influence upon the predictability of a model. A possible measure of the quality of 

the split can be estimated from prevalence of each feature in the training and calibration sets:   

                                                                

 −=
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kjkjkj xPxPxdefect )(')()(                                                                  (8) 

where, the probability of feature xkj in the training set P(xkj) and the probability of xkj in the 

calibration set P(xkj) are calculated by:  
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where Nset(xkj) is the number of quasi-SMILES which contains xkj and Nset represents the 

total number of quasi-SMILES in the set. The quality of split is evaluated based on the value 

of a defect. The defect is calculated with active (not blocked) xkj only. If the defect = 0, the 

split should be considered as an “ideal” one. But in fact, this situation is not possible. 

However, the value of the defect calculated with Eq. 8 gives possibility to compare quality 

of various splits. 

 

Sum of defects (xkj) of all active attributes of quasi-SMILES can be a measure of a defect of 

each quasi-SMILES: 




=
kkj SMILESquasix

kjk xdefectSMILESquasidefect
_

)()_(
    (10) 

Summation of all defects (quasi_SMILES) can be considered as a measure of quality of split 

of data into the visible training, calibration, and invisible validation sets: 
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The probabilistic domain of applicability can be defined via inequality: 

 

)_(2)_( SMILESquasidefectSMILESquasidefect                      (12) 

 

In other words, if quasi-SMILES characterized by the defect (quasi-SMILES) which 

is lower than the doubled average value of this characteristics over compounds included in 

the training set, then this quasi-SMILES falls into the domain of applicability. Otherwise, 

this quasi-SMILES is outside of the domain of applicability. In addition, one can compare 

two splits using the defect (split) calculated with Eq. 11. Split characterized by lower defect 

is better.   
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2.5. Mechanistic interpretation 

 

The described approach allows defining the mechanical interpretation of model 

based on the correlation weights of active features extracted from quasi-SMILES. Having 

the numerical data on the correlation weights of features which takes place in several runs of 

the Monte Carlo optimization, one can extract three categories of these features:  

1) Features which have positive values of the correlation weight in all runs. These are 

promoters of endpoint increase;  

2) Features which have negative values of the correlation weight in all runs. These are 

promoters of endpoint decrease;  

3) Features which have both negative and positive values of the correlation weight in 

different runs of the optimization. These are features with unclear role (one cannot classify 

these features as promoter of increase or decrease for endpoint).  

 

3. Examples of applications of quasi-SMILES for nanomaterials 

 

The principles of the model development and selection of descriptors discussed in the 

previous sections have been tested on various cases. Examples of such studies are provided 

in the next few sections. 

 

3.1. Format of representation of a model 

 

The format of representation of a predictive QSAR model represents an extremely 

important feature for a potential user of the model. There are well-known OECD principles 

widely used in the QSPR/QSAR analyses. However, in the case of the model based on the 

quasi-SMILES, the scheme of building up of quasi-SMILES involves additional 

information. Thus, the format of representation of a model used in this work is the 

following: 

• The description of endpoint; 

• The description of quasi-SMILES; 

• The statistical characteristics of model; 

• Domain of applicability; 

• Mechanistic interpretation. 

The general scheme of the algorithm of building up a model is described in section 

"Method". 

 

3.1. Cytotoxicity for metal oxide nanoparticles under different conditions 

 

3.1.1. The description of endpoint 

The numerical data on cytotoxicity of metal oxide nanoparticles to bacteria E. coli 

(the concentration of the nanoparticles that proved to be fatal to 50% of the bacteria E. coli 

LC50, in mol/L) have been taken from the literature (Pathakoti et al., 2014). The negative 

decimal logarithm of the LC50 (pLC50) has been considered as the endpoint.  The dark 

cytotoxicity and photo-induced cytotoxicity were examined as united endpoint, owing to 

application of the model which is a mathematical function of atomic composition and 

conditions (the presence/absence of photo-inducing). 

 

3.1.2. The description of quasi-SMILES 

In the case of cytotoxicity in darkness, traditional SMILES was used to represent 

metal oxide nanoparticles. In the case of photo-induced cytotoxicity, the symbol '^' was 
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added at the end of traditional SMILES. Thus, absence of '^' means the acting of 

nanoparticle in darkness, presence of '^' means the acting of nanoparticle under illumination 

(Table 1) (Toropova et al., 2015).  

 

3.1.3. The statistical characteristics of model 

 

The best model for cytoctoxicity of metal oxide nanoparticles based on quasi-

SMILES (Toropova et al., 2015)  is the following: 

pLC50 = 1.5185 (± 0.0334) + 0.8370 (± 0.0110)×DCW(1,9)                                 (13)                      

n=22, r2=0.9081, s=0.354, F=198 (training set) 

n=6, r2=0.9943, s=0.454 (calibration set) 

n=6, r2=0.9835, s=0.418 (validation set) 

Table 2 contains the correlation weights for calculations with Eq. 13. An example of the 

calculation with Eq. 13 for quasi-SMILES is provided in the Table 3.. 

 

3.1.4. Domain of applicability 

A value that characterizes half (50%) of any measured property is widely prevalent 

measure for rationalization of the research work. Examples include the definition of bit 

(elementary quantity of information), lethal dose for half of organisms (LD50), the square of 

correlation coefficient that should be larger than 0.5 (i.e again 50%), and so on. Inequality 

12, gives possibility to define SMILES which fall into domain of applicability of prevalence 

of different molecular features (extracted from SMILES). In addition, the percentage of 

SMILES, which fall into domain of applicability is a measure of quality for split into the 

training and validation sets. One assumes that the split is satisfactory if more than 50% of 

compounds are in the domain of applicability. 

The percentages of the domain of applicability, according to inequality 12 are 76%, 

76%, 76%, 71%, 71%, and 71% , for splits 1, 2, 3, 4, 5, and 6, respectively. As it was noted 

above, one can define 50% as a threshold to confirm acceptability of a split. Thus, a split 

that is characterized by domain of applicability of more than 50% can be considered as 

satisfactory: all six examined splits are satisfactory ones. 

3.1.5. Mechanistic interpretation 

The obtained QSAR model allows evaluating a role of various eclectic features on the 

studied endpoint. Based on developed model one concludes that the double bonds (‘=’) are 

stable promoter for decrease of cytotoxicity. The illumination represents a promoter of 

increase of the cytotoxicity for considered metal nano oxides (Table 1). 

 

3.2. Membrane damage by means of TiO2 nanoparticles under different conditions 

 

3.2.1. The description of endpoint 

Recent experimental study on membrane damage by metal oxide nanoparticles 

provides interesting results that were used to develop another QSAR model. Experimental 

data on the physicochemical features of TiO2 nanoparticles and their influence on the 

membrane damage are taken from the literature (Sayes  and Ivanov, 2010). These are 1) 

engineered size (nm); 2) size in water suspension (nm); 3) size in phosphate buffered saline 

(BPS, nm); 4) concentration (mg/L); and 5) zeta potential (mV). Table 4 contains these 

parameters. The above-mentioned physicochemical features of TiO2 nanoparticles were 

involved in building up quasi-SMILES and QSAR models for membrane damage values 

related to various TiO2 nanoparticles (characterized by different physicochemical features) 

(Toropova and Toropov, 2013). The physicochemical data were normalized using following 

equation: 
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Table 5 contains normalized data used to build up the quasi-SMILES. Table 6 

contains quasi-SMILES defined according to scale represented in Figure 5. Three various 

splits of experimental data into the training and test sets were examined (Toropova and 

Toropov, 2013).  These splits obey the following principles: 1) they are random; and 2) the 

ranges of the endpoint for the training and test sets are similar.  

 

3.2.2. The description of quasi-SMILES 

Experimental data were used to develop quasi-SMILES for the investigated 

phenomena. Table 7 contains the correlation weights of various contributions used in the 

predictive model.  

 

3.2.3. The statistical characteristics of model 

 

The best predictive model for membrane damage suggested in the recent work 

(Toropova and Toropov, 2013)  is the following: 

 

MD = 0.8054 (± 0.0044) + 0.1273 (± 0.0014)×DCW(2,20)                                        (15) 

n=10, r2=0.9893, q2=0.9845, s=0.025, F=741 (training set)  

n=5, r2=0.9647, s=0.066, (calibration set) 

n=9, r2=0.8679, s=0.115 (validation set) 

 

3.2.3. Domain of applicability 

The quality of the developed model was tested by investigation of the domain of 

applicability. All quasi-SMILES of the validation set fall into the domain of applicability 

according to inequality 12. 

 

3.2.4. Mechanistic interpretation 

Based on the correlation weights obtained in three runs of the Monte Carlo 

optimization one can conclude that A4 and A9 are promoters of increase of membrane 

damage caused by TiO2 nanoparticles. On the other hand, B2 is the promoter of decrease for 

the endpoint. These findings help to shed some light on investigated phenomena. Again, the 

developed model allows to shed a light on the nature of the studied phenomena. 

 

3.3. Mutagenicity of fullerene under different conditions 

  

3.3.1. The description of endpoints 

 

Another study targeted prediction of mutagenicity of the most classical nanoparticle 

– fullerene. The experimental study provided two endpoints. Both were examined in the 

recent computational work (Toropova et al., 2016):  

1. The bacterial reverse mutation test conducted using Salmonella typhimurium 

strains TA100 (in the presence and absence of metabolic activation under dark 

conditions and irradiation were taken from the work (Shinohara et al., 2009)), 

and  

2. The bacterial reverse mutation test conducted using Escherichia coli strain WP2 

uvrA/pKM101 (in the presence and absence of metabolic activation under dark 

condition and irradiation were taken from the literature (Shinohara et al., 2009)).  
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The experimental data allows considering a number of features that could be used to 

develop QSAR model. Twenty quasi-SMILES were defined for the above data. These 

twenty quasi-SMILES were further randomly distributed into the training, calibration, and 

validation sets. 

 

3.3.2. The description of quasi-SMILES 

The details of the computational work are shown in the Tables 9-11. Table 9 contains 

the scheme of building up quasi-SMILES. This provide basis for the next steps of the study. 

Quasi-SMILES and experimental data on mutagenicity TA100 of fullerene under different 

conditions presented in Table 9 are displayed in the Table 10. Table 11 contains the 

correlation weights used as the basis of the models for three different splits into the training, 

calibration, and validation sets. The quasi-SMILES and experimental data on mutagenicity 

WP2uvrA/pKM101 of fullerene under different conditions (Table 9) are displayed in Table 

12. They were used for a model development and Table 13 contains the correlation weights 

for the models considered in this study. 

 

3.3.3. The statistical characteristics of model 

The utilization of the optimal descriptors calculated according to scheme suggested 

in the literature (Toropova et al., 2016) resulted in the following best models for the above-

mentioned two endpoints: 

      

TA100 = 117.813 + 12.3159×DCW(2,3)                                                                         (16) 

 n= 10, r2=0.6810, s=9.78, F=17 (sub-training set) 

n=5, r2=0.9396, s=7.91 (Calibration set) 

n=5, r2=0.7884, s=7.79 (Validation set) 

                                                  

WP2uvrA/pKM101 = 84.9481 + 16.1111×DCW(3,6)                                                   (17) 

n=10,  r2=0.6805, s=12.1, F=17 (sub-training set) 

n=5,  r2=0.7480, s=16.5 (calibration set) 

n=5,  r2=0.8367, s=25.7 (validation set)        

 

3.3.4. Domain of applicability 

 

The domains of applicability for quasi-SMILES involved in building up models are 

presented in Table 10 (TA100) and Table 12 (WP2uvrA/pKM101). 

 

3.3.5. Mechanistic interpretation 

 

Interestingly, almost all correlation weights are positive for the mutagenicity models of 

fullerene TA100 and WP2uvrA/pKM101. However, their values are different. One can 

extract features of quasi-SMILES with relative large values. These features represent 

leading contributions to the investigated phenomena. The two largest contributions include 

darkness (0) and absence of Mix S9 (-). One needs to note that the obtained results are based 

on small pool of experimental data. Apparently, it is possible that this interpretation can be 

adjusted after similar analysis is performed on larger experimental data for the studied 

endpoints. 

 

4. Conclusions 

The chapter reviews a concept of development of quasi-SMILES application that 

utilize all existing experimental data available for the studied species. This is a major 
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difference between traditional SMILES and quasi-SMILES approaches. The proposed 

concept has been used to predict outcomes of various processes involving nanomaterials. 

We do believe that the suggested hypothesis of building up predictive models is universal 

and can be relatively simply utilized to solve various non-standard tasks. This allows 

extending applications of QSAR/QSPR techniques to the cases not cover by the traditional 

methods. 

Unique abilities of nanomaterials are well-known. The probability of these 

substances be effective pharmaceutical agents is high.  However, traditional QSPR/QSAR 

analyses of these abilities (or these endpoints) often are not convenient for practice, whereas, 

described quasi-SMILES give possibility to solve tasks unsoluble by traditional paradigm of 

the QSPR/QSAR.          
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Table 1 

Quasi-SMILES used to build up model for cytotoxicity of metal oxide nanoparticles. 

Splits* Quasi-SMILES for metal 

oxide nanoparticles 

pLC50  

in mol/L 

[30] 

1 2 3 4 5 6                              

v t c t t c O=[Zn]                           5.80 

t c v t t t [Cu]=O                           4.24 

t t c t c t O=[V]O[V]=O                      3.48 

c t t c t t O=[Y]O[Y]=O                      5.79 

t c c t t t O=[Bi]O[Bi]=O                    3.55 

t t t t v c O=[In]O[In]=O                    2.83 

t c t t c t O=[Sb]O[Sb]=O                    3.12 

t v c v v v O=[Al]O[Al]=O                    2.42 

t t t c t v O=[Fe]O[Fe]=O                    2.40 

c t v t t t O=[Si]=O                         2.54 

v c v v t c O=[Zr]=O                         2.58 

t t t v v c O=[Sn]=O                         2.53 

t t t t t t O=[Ti]=O                         2.14 

t t t c t t [Co]=O                           3.13 

t v t t c t [Ni]=O                           3.79 

v c c t c c O=[Cr]O[Cr]=O                    2.06 

t t t v t v O=[La]O[La]=O                    4.96 

t t t c c t O=[Zn]^                          6.23 

t t t t t t [Cu]=O^                          5.71 

c c t t t t O=[V]O[V]=O^                     3.78 

t v c t v t O=[Y]O[Y]=O^                     5.84 

c t t t t c O=[Bi]O[Bi]=O^                   4.02 

t t v v t c O=[In]O[In]=O^                   3.48 

v t t c t t O=[Sb]O[Sb]=O^                   3.66 

t v t v t t O=[Al]O[Al]=O^                   2.75 

t t v t t v O=[Fe]O[Fe]=O^                   2.54 

c v t c t v O=[Si]=O^                        2.92 

v c c t v v O=[Zr]=O^                        3.04 

t t t v t v O=[Sn]=O^                        3.24 

t t t t t t O=[Ti]=O^                        4.68 

t t t t v t [Co]=O^                          3.33 

v v v c t t [Ni]=O^                          3.87 
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t t t t t t O=[Cr]O[Cr]=O^                   2.06 

t t t t c t O=[La]O[La]=O^                   5.56 

*) t=training set; c=calibration set; v=validation set 

 

 

 

Table 2 

Correlation weights for calculations with Eq. 13 

 

xkj          CW(xkj)     Frequency in training 

set 

Frequency in calibration 

set 

=      0.10158 22 6 

Al      0.19940 1 0 

Bi      1.00478 2 0 

Co      1.35252 1 0 

Cr     -0.24908 1 1 

Cu      3.44583 2 0 

Fe      0.20463 2 0 

O     -0.27911 22 6 

In      0.62103 1 0 

La      1.95157 1 1 

Ni      2.29898 1 1 

V      0.79887 1 1 

Sb      0.72663 1 1 

Si      0.84577 2 0 

Y      2.40333 1 0 

Sn      1.05005 1 0 

Ti      1.64851 2 0 

[      0.20343 22 6 

^      1.00105 12 2 

Zn      4.60092 1 1 

Zr      1.09949 1 0 

 

Table 3 

Example of calculation of DCW(1,7) for Eq. 13.  

The representation of metal oxide is “[Cu]=O” 

 

DCW(1,9) = ∑CW(xkj) = 3.67516;  

 

pLC50 =   1.5185 +    0.8370 * DCW(1,9)    =    4.5946                           

                            

xkj      CW(xkj) 

[ 0.20343 

Cu 3.44583 

[ 0.20343 

= 0.10158 
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O -0.27911 


− SMILESquasix

kj

kj

xCW )(  
 

3.67516 

 

Table 4 

Experimental data on features (impacts) of TiO2 nanoparticles, and their denotations. 

 

 A B C D E 

ID Enginered 

size,  

nm 

Size in 

water, nm 

Size in 

PBS,  

nm 

Concentration, 

mg/L 

Zeta 

potential, 

mV 

1      30     125    1250      25      10 

2      30     102     987      25      12 

3      30     281    1543      50      15 

4      30     101    1045      50       9 

5      30     299    1754     100      11 

6      30     134     961     100      11 

7      30     600    1876     200      12 

8      30     298    1165     200      12 

9      45     129    2567      25       9 

10      45     129    2309      25      10 

11      45     201    2431      50       9 

12      45     201    2987      50      11 

13      45     451    2941     100      11 

14      45     451    1934     100       9 

15      45     876    1965     200      11 

16      45     876    2109     200      10 

17     125     136    3215      25      11 

18     125     136    2667      25      10 

19     125     149    3782      50      10 

20     125     149    2144      50      15 

21     125     343    3871     100      12 

22     125     343    2890     100       9 

23     125     967    3813     200       9 

24     125     967    2671     200       8 
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Table 5 

Normalized (Eq. 14)  representation of physicochemical features of TiO2 nanoparticles  

 

 A B C D E 

ID Enginered 

size,  

normalized 

Size in 

water, 

normalized 

Size in 

PBS,  

normalized 

Concentration, 

normalized 

-Zeta 

potential, 

normalized 

1    0.39    0.21    0.46    0.22    0.78 

2    0.39    0.19    0.40    0.22    0.87 

3    0.39    0.36    0.52    0.33    1.00 

4    0.39    0.19    0.42    0.33    0.74 

5    0.39    0.37    0.56    0.56    0.83 

6    0.39    0.22    0.40    0.56    0.83 

7    0.39    0.66    0.59    1.00    0.87 

8    0.39    0.37    0.44    1.00    0.87 

9    0.48    0.22    0.73    0.22    0.74 

10    0.48    0.22    0.68    0.22    0.78 

11    0.48    0.28    0.70    0.33    0.74 

12    0.48    0.28    0.82    0.33    0.83 

13    0.48    0.52    0.81    0.56    0.83 

14    0.48    0.52    0.60    0.56    0.74 

15    0.48    0.91    0.61    1.00    0.83 

16    0.48    0.91    0.64    1.00    0.78 

17    1.00    0.22    0.86    0.22    0.83 

18    1.00    0.22    0.75    0.22    0.78 

19    1.00    0.23    0.98    0.33    0.78 

20    1.00    0.23    0.64    0.33    1.00 

21    1.00    0.42    1.00    0.56    0.87 

22    1.00    0.42    0.80    0.56    0.74 

23    1.00    1.00    0.99    1.00    0.74 

24    1.00    1.00    0.75    1.00    0.70 
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Table 6 

Building up quasi-SMILES for model of membrane damage values by TiO2 nanoparticles 

(MD, units/L) 

 A B C D E  

ID Code for 

Enginered 

size 

Code 

for Size 

in 

water 

Code 

for Size 

in PBS 

Code for 

Concentration 

Code for 

Zeta 

potential 

MD, 

units/L 

1 A3 B2 C4 D2 E7    0.90 

2 A3 B1 C4 D2 E8    1.00 

3 A3 B3 C5 D3 E9    0.75 

4 A3 B1 C4 D3 E7    0.70 

5 A3 B3 C5 D5 E8    1.04 

6 A3 B2 C3 D5 E8    1.09 

7 A3 B6 C5 D9 E8    1.15 

8 A3 B3 C4 D9 E8    1.20 

9 A4 B2 C7 D2 E7    0.90 

10 A4 B2 C6 D2 E7    0.85 

11 A4 B2 C7 D3 E7    0.75 

12 A4 B2 C8 D3 E8    0.78 

13 A4 B5 C8 D5 E8    1.40 

14 A4 B5 C5 D5 E7    1.50 

15 A4 B9 C6 D9 E8    1.35 

16 A4 B9 C6 D9 E7    1.40 

17 A9 B2 C8 D2 E8    1.25 

18 A9 B2 C7 D2 E7    1.17 

19 A9 B2 C9 D3 E7    1.00 

20 A9 B2 C6 D3 E9    1.10 

21 A9 B4 C9 D5 E8    1.50 

22 A9 B4 C7 D5 E7    1.42 

23 A9 B9 C9 D9 E7    1.60 

24 A9 B9 C7 D9 E6    1.65 
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Table 7 

Correlation weights for calculation of DCW(T*,N*) 

Split 1 Split 2 Split 3 

xkj          CW(xkj)     xkj          CW(xkj)     xkj          CW(xkj)     

A3     -0.11150 A3      0.71150 A3      0.16450 

A4      1.30300 A4      1.19800 A4      0.82400 

A9      2.83850 A9      3.25100 A9      2.55400 

B1          0.0 B1          0.0 B1      0.40000 

B2     -0.69250 B2     -0.85300 B2     -0.04800 

B3      0.15000 B3     -0.02800 B3     -0.05200 

B4          0.0 B4          0.0 B4          0.0 

B9          0.0 B5      1.88450 B5      2.42275 

C3          0.0 B6          0.0 B9      2.41350 

C4          0.0 B9          0.0 C3          0.0 

C5          0.0 C3          0.0 C4      0.36575 

C6          0.0 C4          0.0 C5      0.64075 

C7     -0.74600 C5     -0.48000 C6          0.0 

C8          0.0 C6          0.0 C7      0.58550 

C9          0.0 C7          0.0 C8     -0.05400 

D2      1.03450 C8     -0.04900 C9      0.63875 

D3     -0.56350 C9     -0.20300 D2      1.08450 

D5      2.67400 D2      1.03950 D3     -0.03000 

D9      3.01650 D3     -0.21050 D5      2.63950 

E7      0.14800 D5      2.34800 D9      2.48750 

E8      0.27600 D9      3.10850 E6          0.0 

E9          0.0 E7      0.56450 E7      0.10200 

  E8      0.29250 E8      0.68875 

  E9          0.0 E9          0.0 
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Table 8 

An example of model for TiO2 nanoparticles’ membrane damage 

 

Set Quasi-SMILES   DCW(2,20) Expr Calc Expr-Calc ID 

Training A3B3C5D3E9     -0.52500 0.750 0.739 0.011 3 

Training A3B2C3D5E8      2.14600 1.090 1.079 0.011 6 

Training A3B3C4D9E8      3.33100 1.200 1.229 0.029 8 

Training A4B2C7D2E7      1.04700 0.900 0.939 0.039 9 

Training A4B2C7D3E7     -0.55100 0.750 0.735 0.015 11 

Training A4B9C6D9E7      4.46750 1.400 1.374 0.026 16 

Training A9B2C8D2E8      3.45650 1.250 1.245 0.005 17 

Training A9B2C7D2E7      2.58250 1.170 1.134 0.036 18 

Training A9B2C9D3E7      1.73050 1.000 1.026 0.026 19 

Training A9B4C7D5E7      4.91450 1.420 1.431 0.011 22 

Calibration A3B1C4D2E8      1.19900 1.000 0.958 0.042 2 

Calibration A4B2C8D3E8      0.32300 0.780 0.847 0.067 12 

Calibration A9B2C6D3E9      1.58250 1.100 1.007 0.093 20 

Calibration A9B4C9D5E8      5.78850 1.500 1.542 0.042 21 

Calibration A9B9C9D9E7      6.00300 1.600 1.570 0.030 23 

Validation A3B2C4D2E7 0.37850 0.900 0.854 0.046 1 

Validation A3B1C4D3E7 -0.52700 0.700 0.738 -0.038 4 

Validation A3B3C5D5E8 2.98850 1.040 1.186 -0.146 5 

Validation A3B6C5D9E8 3.18100 1.150 1.210 -0.060 7 

Validation A4B2C6D2E7 1.79300 0.850 1.034 -0.184 10 

Validation A4B5C8D5E8 4.25300 1.400 1.347 0.053 13 

Validation A4B5C5D5E7 4.12500 1.500 1.331 0.169 14 

Validation A4B9C6D9E8 4.59550 1.350 1.390 -0.040 15 

Validation A9B9C7D9E6 5.10900 1.650 1.456 0.194 24 
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Table 9 

The list of conditions, having impact upon mutagenicity of fullerene C60 nanoparticles which 

were utilized to build up quasi-SMILES and models. 

 

Conditions Symbols for quasi-SMILES 

Dark or Irradiation “0” = Darkness 

“1” = Irradiation 

Mix S9 “+” = with Mix S9 

“- “= without Mix S9 

Dose (g/plate) “A” = 50 

“B” = 100 

“C” = 200 

“D” = 400 

“E” = 1000 

 

 

 

Table 10 

Experimental and calculated  values of the TA100 for fullerene nanoparticles impact under 

different conditions  

ID 1* 2 3 Quasi-

SMILES 

Expriment Split 1 Split 2 Split 3 1* 2 3 

1 V V V 0+A 146 132.8046 115.3775 143.2652 Y Y Y 

2 T C V 0+B 141 145.8861 121.3559 144.0029 N Y Y 

3 T C C 0+C 159 157.1709 136.5559 157.8729 N Y Y 

4 V C V 0+D 160 162.0685 142.5034 161.6878 Y Y Y 

5 T V T 0+E 177 165.3027 143.7145 165.5465 Y N Y 

6 C C C 0-A 143 130.9643 134.7925 147.8862 Y Y Y 

7 T T C 0-B 139 144.0458 140.7708 148.6238 N Y N 

8 V T T 0-C 169 155.3307 155.9708 162.4939 N Y Y 

9 T V C 0-D 168 160.2283 161.9183 166.3087 Y Y Y 

10 T T T 0-E 152 163.4625 163.1294 170.1675 Y N N 

11 C V T 1+A 129 116.4477 113.3044 130.1540 Y Y Y 

12 T C T 1+B 131 129.5292 119.2827 130.8917 N Y Y 

13 V T T 1+C 138 140.8141 134.4827 144.7618 N Y Y 

14 T T T 1+D 137 145.7117 140.4303 148.5766 Y Y Y 

15 C V T 1+E 160 148.9459 141.6413 152.4354 Y N N 

16 V T T 1-A 136 114.6075 132.7193 134.7750 Y Y Y 

17 T T V 1-B 136 127.6890 138.6977 135.5127 N Y Y 

18 T T C 1-C 138 138.9739 153.8977 149.3827 N Y Y 

19 C T T 1-D 164 143.8715 159.8452 153.1976 Y Y Y 

20 C T V 1-E 172 147.1057 161.0562 157.0563 Y N N 
 

*) Split 1, 2, and 3; T=training set; C=calibration set; and V=validation set; Y=quasi-

SMILES falls into Domain of applicability (otherwise “N”). 
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Table 11 

Correlation weights for symbols which represent conditions of fullerene impact on TA100 

mutagenicity  

Symbols of quasi-SMILES, xkj       CW(xkj) 

run 1     

CW(xkj) 

run 2     

CW(xkj) 

run 3     

+ 1.06698 0.47336 0.19086 

- 0.99597 1.77789 0.56606 

0 1.37861 0.96051 1.93566 

1 0.74747 0.82121 0.87109 

A 0.0 0.0 -0.05990 

B 0.50476 0.40170 0.0 

C 0.94020 1.42303 1.12619 

D 1.12918 1.82266 1.43594 

E 1.25398 1.90403 1.74925 

 

 

Table 12 

Experimental and calculated values of the WP2uvrA/pKM101 for fullerene nanoparticles 

impact under different conditions 

 

ID 1* 2 3 Quasi-

SMILES 

Expriment Split 1 Split 2 Split 3 1* 2 3 

1 T C T 0+A 113 118.9590 95.2449 133.2322 Y Y Y 

2 T V C 0+B 106 118.9590 127.8341 126.7746 Y N Y 

3 V T V 0+C 112 118.9590 127.9124 126.7746 Y Y Y 

4 T T C 0+D 115 118.9590 95.2449 126.7746 Y Y Y 

5 T C T 0+E 145 152.9472 169.4336 144.8871 Y Y Y 

6 C T T 0-A 160 159.2997 136.8401 162.2816 Y Y Y 

7 V T C 0-B 162 159.2997 169.4294 155.8240 Y N Y 

8 C V C 0-C 174 159.2997 169.5076 155.8240 Y Y Y 

9 V V T 0-D 179 159.2997 136.8401 155.8240 Y Y Y 

10 T T V 0-E 220 193.2879 211.0289 173.9365 Y Y Y 

11 V C T 1+A 114 84.2194 53.6913 104.3638 Y Y Y 

12 C V V 1+B 105 84.2194 86.2806 97.9062 Y N Y 

13 V C V 1+C 113 84.2194 86.3588 97.9062 Y Y Y 

14 T V C 1+D 110 84.2194 53.6913 97.9062 Y Y Y 

15 C T T 1+E 123 118.2076 127.8801 116.0187 Y Y Y 

16 T V T 1-A 127 124.5601 95.2866 133.4132 Y Y Y 

17 C T T 1-B 133 124.5601 127.8759 126.9556 Y N Y 

18 T T V 1-C 121 124.5601 127.9541 126.9556 Y Y Y 

19 C C T 1-D 117 124.5601 95.2866 126.9556 Y Y Y 

20 T C T 1-E 138 158.5483 169.4754 145.0681 Y Y Y 

 

*) Split 1, 2, and 3; T=training set; C=calibration set; and V=validation set; Y=quasi-

SMILES falls into Domain of applicability (otherwise “N”). 
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Table 13 

Correlation weights for symbols which represent conditions of impact of fullerene C60 

nanoparticles on mutagenicity for WP2uvrA/pKM101 

Symbols of quasi-SMILES, Sk           CW(Sk) 

run 1 

CW(Sk) 

run2 

CW(Sk) 

run 3 

+      0.50000      0.69675      0.39982 

-      0.94039      1.60115      2.20288 

0      1.12778      1.60305      2.19630 

1      0.74854      0.69727      0.40447 

A          0.0          0.0      0.40082 

B          0.0      0.99558          0.0 

C          0.0      0.70300          0.0 

D          0.0          0.0          0.0 

E      0.37104      1.59979      1.12422 

 

 

 
 

Figure 1 

The increase of numbers of articles related to keyword “nanomaterial” (2000 to 2015), 

according to: www.sciencedirect.com. 
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Figure 2 

The general scheme of utilization of quaisi-SMILES 
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Figure 3 

The selection of the number of epochs of the Monte Carlo optimization using: (i) the 

correlation coefficient between experimental and predicted values of an endpoint; and (ii) 

root-mean squared error.  
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Figure 4 

The scheme of the definition of the T* and N* values which give preferable statistics for the 

calibration set. 

 

 
 

Figure 5 

Partition of normalized physicochemical features into categories 1, 2, …, 9 according to its 

value. 
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